Chihyun Hwang | Energy Sustainability | Best Researcher Award

Dr. Chihyun Hwang | Energy Sustainability | Best Researcher Award

Principle at Koreal Electronics Technology Institute | South Korea

Dr. Chihyun Hwang is a distinguished energy scientist and Senior Researcher at the Korea Electronics Technology Institute (KETI), specializing in next-generation electrochemical energy storage systems. His expertise spans lithium-ion, sodium-ion, zinc-ion, and all-solid-state batteries, with particular emphasis on molecular binder design, nanostructured anodeless materials, and in-situ electrochemical analysis. Over the years, he has developed an outstanding research profile, contributing significantly to advancing energy technologies that support high-density, durable, and safe energy storage solutions for electric vehicles and renewable energy systems. With an H-index of 22 and nearly 60 published papers in prestigious journals such as Advanced Energy Materials, Advanced Functional Materials, and Angewandte Chemie, he has demonstrated both academic excellence and industry relevance. His work has frequently addressed critical issues in interface stability, electrode architecture, and electrochemical reversibility, ensuring long-term performance and scalability of energy storage devices. Beyond publications, Dr. Hwang actively contributes to professional communities, serving as Academic Director of the Korean Battery Society. His research leadership, supported by national and international collaborations, has positioned him as a vital contributor to the global battery research community, dedicated to enabling sustainable and high-performance energy technologies for the future.

Professional Profile

Scopus | ORCID | Google Scholar

Education

Dr. Chihyun Hwang pursued a rigorous academic path that laid the foundation for his career in energy storage research. He earned his Bachelor of Science in Fiber Engineering from Inha University, where he developed a strong materials science background. Motivated by the potential of energy technologies, he advanced to doctoral studies at the Ulsan National Institute of Science and Technology (UNIST), completing his Ph.D. in Energy Engineering under the mentorship of Professor Hyun-Kon Song. His doctoral research, titled Designing Molecular Structures of Polymeric Binders for Alloying-Based Anodes, reflected his early focus on electrochemical materials engineering and binder chemistry. The project involved designing and optimizing polymer binders to enhance electrode reversibility and stability, especially for high-capacity alloying anode systems such as silicon and antimony. This work gave him critical expertise in molecular design, electrochemical kinetics, and the durability of next-generation battery systems. His academic training was further enriched through exposure to interdisciplinary studies in chemical engineering, materials processing, and nanotechnology. Collectively, his education equipped him with both theoretical depth and experimental versatility, enabling him to address fundamental challenges in modern battery science while preparing him for a highly impactful international research career.

Professional Experience

Dr. Chihyun Hwang’s professional journey demonstrates a consistent trajectory of leadership and innovation in advanced energy storage. He has served as Senior Researcher at the Advanced Batteries Research Center of KETI, where he leads multiple large-scale projects on lithium metal, sodium-ion, and solid-state batteries. He was previously a Research Professor at UNIST, focusing on energy and chemical engineering, bridging academia and industry in battery innovation. Before that, he broadened his international exposure as a Postdoctoral Fellow in the research group of Prof. Nian Liu at the Georgia Institute of Technology, investigating zinc-ion and solid-state battery chemistries. Prior to his U.S. experience, he worked as a Postdoctoral Researcher in Prof. Hyun-Kon Song’s group at UNIST, extending his doctoral research into industrially viable energy storage solutions. At KETI, Dr. Hwang plays a critical role in projects developing digital twin infrastructures for battery manufacturing, high-energy solid-state batteries, and safe sodium-ion systems. His career reflects an integration of academic rigor, postdoctoral innovation, and applied industrial research, with a strong emphasis on multidisciplinary collaboration. This combination highlights his ability to translate laboratory advances into scalable technologies, essential for global energy transition initiatives.

Research Interest

Dr. Chihyun Hwang’s research interests span a wide spectrum of next-generation energy storage technologies, emphasizing fundamental innovation and practical application. A major focus is all-solid-state batteries, where he works on designing polymeric binders, nanostructured anodeless materials, and interfacial stabilizers to improve energy density and long-term cycling. He also explores large-scale bipolar stacking strategies to enable commercialization. His second research stream involves sodium-ion batteries, particularly mitigating reactive oxygen species through surface doping and additive engineering for stable high-voltage cathodes. Another growing area is zinc-ion batteries, where his work includes developing single-crystalline zinc anodes, electrolyte systems, and protective interfacial layers that enhance cycling stability and suppress dendritic growth. A distinctive strength of his research lies in in-situ electrochemical analysis, employing advanced techniques such as Raman microscopy, differential electrochemical mass spectrometry, and impedance spectroscopy to elucidate reaction mechanisms. These methods provide molecular-level insights into degradation and reversibility, accelerating the design of more robust systems. Collectively, his research aims to develop high-energy-density, safe, and durable electrochemical storage devices for electric mobility and renewable integration. His interests integrate theoretical understanding, nanomaterials design, and scalable processing, establishing him as a leading figure in the quest for sustainable battery technologies.

Research Skills

Dr. Chihyun Hwang possesses a diverse and highly specialized skill set that underpins his success in energy storage research. He is an expert in molecular and polymer design, particularly for binders that enhance electrode kinetics and mechanical resilience. His skills in nanostructure engineering allow him to create novel anodeless materials and functional electrode architectures that optimize charge transport and suppress failure mechanisms. A significant technical strength lies in his command of in-situ characterization techniques, including Raman microscopy, electrochemical impedance spectroscopy, and differential electrochemical mass spectrometry, which provide real-time insights into electrochemical reactions and interfacial dynamics. He is also highly experienced in solid-state battery fabrication and analysis, enabling him to evaluate interface stability and optimize electrolyte formulations. His expertise extends to computational and analytical methods, which he uses to model battery reactions and validate experimental findings. Beyond laboratory techniques, Dr. Hwang demonstrates strong project management skills, having coordinated multi-institutional and industry-supported initiatives. His ability to integrate materials synthesis, device engineering, and mechanistic analysis allows him to approach research challenges holistically. These combined skills make him not only a prolific researcher but also a leader capable of bridging science, engineering, and technology development in advanced energy systems.

Awards and Honors

Dr. Chihyun Hwang’s contributions to energy research have been recognized through prestigious awards and leadership roles that highlight both his scientific excellence and professional impact. He was elected Academic Director of the Korean Battery Society, underscoring his standing as a leading voice in the national research community. He also received the Award Certificate of Chungbuk Governor, reflecting regional acknowledgment of his technological contributions. He was honored with the highly competitive Sejong Science Fellowship (NRF), awarded to exceptional early-career researchers in Korea. This fellowship supported his independent research initiatives and accelerated his trajectory in advanced battery innovation. In addition to these distinctions, Dr. Hwang has consistently been invited to deliver presentations at international conferences, including meetings of the Materials Research Society, Electrochemical Society, and Korean Battery Society. His invited talks and presentations demonstrate global recognition of his expertise in zinc-ion, sodium-ion, and solid-state batteries. Collectively, these awards and honors not only validate his scientific contributions but also highlight his leadership potential in shaping Korea’s and the world’s energy technology landscape. His recognitions underscore his dual role as a pioneering researcher and influential academic contributor.

Publications Top Notes

Title: Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems
Year: 2019
Citation: 304

Title: Self‐assembling films of covalent organic frameworks enable long‐term, efficient cycling of zinc‐ion batteries
Year: 2021
Citation: 188

Title: Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes
Year: 2018
Citation: 138

Title: Folding graphene film yields high areal energy storage in lithium-ion batteries
Year: 2018
Citation: 122

Title: An antiaging electrolyte additive for high‐energy‐density lithium‐ion batteries
Year: 2020
Citation: 83

Conclusion

Dr. Chihyun Hwang exemplifies the profile of a modern applied scientist, integrating deep academic training, cutting-edge research, and practical innovation in the field of advanced batteries. With a career spanning prestigious institutions in Korea and the United States, he has built a strong reputation for addressing critical challenges in electrochemical energy storage through creative design and rigorous analysis. His more than 50 publications, combined with international collaborations and leadership in professional societies, mark him as both a thought leader and a collaborative innovator. His work consistently bridges the gap between theory and application, from molecular design of binders to the development of high-energy solid-state and sodium-ion systems. Recognition through fellowships, awards, and professional leadership further reflects his excellence and influence in the scientific community. Looking forward, Dr. Hwang is well-positioned to drive transformative advances in sustainable energy technologies, particularly in developing safer, higher-density, and more durable batteries for electric mobility and renewable integration. His career embodies a commitment to excellence, innovation, and impact, making him not only a respected researcher but also a vital contributor to the global transition toward sustainable energy solutions.

Jiacheng Li | Environmental Science | Best Researcher Award

Assist. Prof. Dr. Jiacheng Li | Environmental Science | Best Researcher Award

Teacher at Beijing Normal University, China

Dr. Jiacheng Li is an accomplished Assistant Professor at the School of Environment, Beijing Normal University, China. With a strong academic foundation in environmental engineering and catalysis, Dr. Li has developed an impressive portfolio in pollution control and water treatment technologies. His research is centered on the design and application of advanced materials—including single-atom catalysts and porous frameworks—for the treatment of various pollutants such as nitrates, heavy metals, and halogenated phenols. His interdisciplinary expertise combines electrochemical techniques, catalysis, and materials science, enabling him to develop innovative, environmentally friendly solutions. Dr. Li has made significant scholarly contributions, publishing in high-impact journals like Environmental Science & Technology, PNAS, Applied Catalysis B, and ACS Applied Materials & Interfaces. He earned his Ph.D. from China University of Petroleum (Beijing), followed by a postdoctoral tenure at Tsinghua University, one of China’s premier research institutions. His academic journey is marked by dedication, rigor, and a commitment to translating scientific knowledge into practical environmental applications. Dr. Li’s evolving research continues to contribute to sustainable development goals, particularly in the areas of clean water and pollution remediation. His future aims include developing multifunctional materials for scalable, cost-effective environmental treatments.

Professional Profile

Education

Jiacheng Li’s educational journey is rooted in some of China’s most esteemed universities, equipping him with a robust interdisciplinary foundation in environmental science, chemistry, and materials engineering. He began his academic pursuit at the East China University of Science and Technology, earning a Bachelor’s degree between 2008 and 2012. This undergraduate education grounded him in chemical engineering principles and sparked his interest in environmental issues. To further specialize, Dr. Li pursued doctoral studies at the China University of Petroleum (Beijing) from 2012 to 2017, where he obtained his Ph.D. His research during this period focused on environmental catalysis and water purification, areas that would become central to his career. His doctoral work emphasized the synthesis and application of novel catalytic materials for pollutant removal, laying the groundwork for his subsequent research in single-atom catalysis and electrochemical technologies. Throughout his education, Dr. Li cultivated a deep appreciation for the relationship between scientific research and real-world environmental problems. The combination of rigorous academic training and early research experiences not only honed his technical competencies but also instilled a strong motivation to develop innovative and practical environmental solutions. His education continues to influence his research philosophy and teaching approach.

Professional Experience

Dr. Jiacheng Li’s professional career reflects a steady trajectory of academic growth and scientific excellence. Following the completion of his Ph.D. in 2017, Dr. Li joined Tsinghua University as a postdoctoral researcher, where he worked from 2017 to 2023. At Tsinghua, he collaborated with leading scientists and contributed to high-impact projects focused on electrochemical pollutant removal and catalytic material innovation. This six-year postdoctoral period was marked by intense research activity and prolific publication, as evidenced by his multiple papers in top-tier journals such as PNAS, Journal of Catalysis, and Chemical Engineering Journal. His time at Tsinghua allowed him to deepen his expertise in electrochemical technologies, single-atom catalysis, and advanced material synthesis. In 2023, Dr. Li was appointed Assistant Professor at the School of Environment, Beijing Normal University, where he currently leads research in environmental catalysis and water treatment. In his faculty role, he not only continues to publish impactful research but also mentors students and contributes to the academic community through teaching and collaborative projects. Dr. Li’s professional path illustrates a commitment to academic excellence, innovation, and the practical application of science to solve pressing environmental challenges.

Research Interest

Dr. Jiacheng Li’s research interests lie at the intersection of environmental chemistry, catalysis, and materials science, with a strong emphasis on sustainable technologies for pollutant removal. His primary focus is on the development and application of advanced catalytic systems—especially single-atom catalysts, metal-organic frameworks (MOFs), and mesoporous materials—for the treatment of contaminants in water and air. Key pollutants of interest include nitrates, heavy metals like Cr(VI) and Cu(II), and halogenated phenols, which pose serious threats to environmental and public health. He is particularly interested in the electrochemical reduction of nitrates to harmless or useful products, an area where he has achieved high Faradaic efficiencies with single cobalt atom catalysts. His work also explores the recovery and reuse of waste materials, such as transforming spent zeolites into functional electrochemical devices. Additionally, Dr. Li investigates the structure–activity relationships of catalysts, aiming to enhance their selectivity, stability, and efficiency. By integrating material synthesis, computational modeling, and mechanistic studies, he strives to design next-generation environmental materials that are both effective and economically viable. His broader vision is to contribute to the development of green, scalable technologies that align with global environmental sustainability goals.

Research Skills

Dr. Jiacheng Li possesses a broad and sophisticated skill set that spans material synthesis, electrochemistry, and environmental engineering. His core technical skills include the design and fabrication of advanced materials, such as single-atom catalysts, metal-organic frameworks (MOFs), zeolites, and mesoporous silica composites. He is adept at various synthesis techniques including hydrothermal, sol–gel, and impregnation methods, allowing precise control over morphology, composition, and porosity. In electrochemical analysis, Dr. Li is experienced in using tools like cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry to evaluate catalytic performance, particularly for nitrate reduction and denitrification processes. He is also skilled in spectroscopic and microscopic characterization methods such as XPS, TEM, SEM, and BET surface analysis to probe material structure and activity. Furthermore, he employs kinetic modeling and mechanistic studies to understand reaction pathways and optimize catalytic efficiency. His interdisciplinary approach integrates chemistry, environmental science, and nanotechnology, enabling him to tackle complex environmental challenges with innovative solutions. Dr. Li’s research skills are not only limited to laboratory techniques; he also excels in scientific communication, evidenced by his publications in prestigious journals. These combined abilities make him a valuable contributor to both academic research and applied environmental technologies.

Awards and Honors

Although specific formal awards are not detailed in the provided profile, Dr. Jiacheng Li’s academic accomplishments and publication record reflect high-level recognition and influence in the environmental science and catalysis communities. His work has appeared in world-renowned journals such as Proceedings of the National Academy of Sciences of the USA (PNAS), Environmental Science & Technology, Applied Catalysis B: Environmental, and ACS Applied Materials & Interfaces, signaling peer acknowledgment of his impactful contributions. Co-authoring multiple papers in PNAS—a prestigious multidisciplinary journal—is itself indicative of his international standing. The consistent collaboration with top-tier researchers, including during his tenure at Tsinghua University, also points to recognition and trust within the scientific community. Additionally, his appointment as Assistant Professor at Beijing Normal University, a leading institution in environmental education and research, highlights his merit and academic potential. His published works are frequently cited, contributing to the global discourse on water treatment and pollution control. In the coming years, it is likely that Dr. Li’s groundbreaking research will garner further institutional and professional accolades, including competitive research grants and innovation awards aligned with sustainable development initiatives.

Conclusion

Dr. Jiacheng Li stands out as a dedicated scientist, innovative researcher, and emerging leader in the field of environmental catalysis and pollutant remediation. His academic journey—from undergraduate studies to a Ph.D., postdoctoral research at Tsinghua University, and his current role as Assistant Professor at Beijing Normal University—has been marked by excellence and consistent contribution to addressing global environmental challenges. Dr. Li’s research bridges fundamental science and practical application, focusing on next-generation materials and electrochemical technologies for the removal of hazardous pollutants from water systems. His numerous publications in high-impact journals underscore his role as a thought leader in the areas of nitrate reduction, heavy metal treatment, and catalytic material development. Beyond his technical expertise, Dr. Li brings a collaborative spirit, mentoring capability, and a vision for sustainable, scalable environmental solutions. His work not only advances academic knowledge but also offers viable strategies for real-world environmental protection. As he continues to expand his research portfolio, Dr. Li is poised to make even greater contributions to the fields of environmental science, green chemistry, and materials innovation—ultimately improving environmental health and safety for future generations.

Publications Top Notes

Title: Effective oxidative desulfurization of high-sulfur petroleum coke over 4A zeolite reinforced Mo@CeO₂
Authors: Jiacheng Li d, Wenfang Zhang a, Yuge Shen c, Fumin Li a, Mingqing Hua a, Peiwen Wu a, Huifang Cheng a, Hui Liu a, Yan Huang a, Jixing Liu a, Wenshuai Zhu a, b

Year: 2025
Title: Efficient oxidative desulfurization of high-sulfur petroleum coke over polyoxometalates HPA coupled CeO₂
Authors: Jiacheng Li e, Fengxin Li a, Yan Wang c, Fumin Li c, Mingqing Hua c, Yan Huang c, Huifang Cheng c, d, Haibo Wu d, Jixing Liu b, c
Year: 2025
Citations: 1

Title: Evolution of Interfacial Hydration Structure Induced by Ion Condensation and Correlation Effects
Authors: Han Li; Zhi Xu; Jiacheng Li; Alessandro Siria; Ming Ma
Year: 2025
Citations: 1

Likun Gao | Energy Sustainability | Best Researcher Award

Prof. Dr. Likun Gao | Energy Sustainability | Best Researcher Award

Professor at Northeast forestry University, China

Professor Likun Gao is a pioneering researcher in the interdisciplinary field of advanced wood-based materials, serving at the School of Materials Science and Engineering, Northeast Forestry University, China. His work is at the forefront of integrating wood science with cutting-edge nanotechnology, particularly focusing on wood nanogenerators, electrocatalytic wood, and multifunctional self-healing materials. With a robust foundation in wood science and engineering, he has rapidly ascended as an influential academic voice in materials research. His innovations have practical implications for sustainable energy, water splitting, environmental sensing, and extreme-condition applications. Professor Gao has authored over 40 peer-reviewed publications in premier journals such as Chem. Soc. Rev., PNAS, Energy & Environmental Science, and Advanced Functional Materials. His contributions include several highly cited papers and journal covers, affirming the novelty and impact of his research. He also holds multiple patents and has co-authored important book chapters related to electrocatalysis and wood-based functional materials. Recognized through prestigious programs like China’s National Ten Thousand Talents and the CAST Young Elite Scientists Sponsorship, Gao exemplifies the next generation of scientific leadership in sustainable and intelligent materials. His commitment to interdisciplinary collaboration and scientific innovation positions him as a transformative figure in applied materials science.

Professional Profile

Education

Likun Gao’s educational journey reflects a deep and consistent focus on wood science and materials engineering, beginning with a Bachelor of Science in Wood Science and Engineering from Northeast Forestry University in 2014. Demonstrating early academic promise, he pursued his doctoral studies at the same institution, earning a Ph.D. in Wood Science and Technology in 2020. His doctoral research was marked by a growing interest in integrating biological materials with nanotechnology to produce functional composites. As part of his Ph.D. program, Gao was selected for an international research stint at the Georgia Institute of Technology, USA, from 2018 to 2020. There, he expanded his expertise in materials science and engineering, engaging with global experts and exploring the intersection of nanomaterials and bio-based resources. This international exposure enriched his methodological rigor and allowed him to contribute to several high-impact collaborations. His academic background forms the backbone of his innovative research portfolio and underpins his current leadership in multifunctional wood-based materials. The comprehensive, cross-continental training he received has equipped him with a unique perspective on the potential of sustainable materials in modern technology.

Professional Experience

Since March 2021, Professor Likun Gao has been serving as a full Professor at Northeast Forestry University’s School of Materials Science and Engineering. In this role, he leads a dynamic research group exploring the frontier of wood nanotechnology and sustainable energy materials. Building on his doctoral and international postdoctoral experiences, he has established an impressive track record of research output and innovation. Under his leadership, the lab has produced over 40 peer-reviewed journal articles, numerous high-impact papers, and several patents. His collaborations span interdisciplinary teams focused on energy conversion, smart materials, and environmental responsiveness. In addition to his scientific output, Professor Gao is also dedicated to mentoring students and early-career researchers. He regularly supervises graduate students, fostering an environment of creativity, innovation, and academic rigor. His teaching responsibilities include advanced courses in nanomaterials, wood science, and electrocatalysis. Beyond academic instruction, Gao actively contributes to national and international research projects and often serves as a reviewer for top-tier journals. His role as a professor is multifaceted—blending research, mentorship, collaboration, and academic service—which has rapidly elevated his stature in China’s scientific community and beyond.

Research Interest

Professor Likun Gao’s research interests lie at the convergence of sustainable materials science and advanced nanotechnology, focusing particularly on wood-derived functional materials. One of his core areas is the development of wood nanogenerators, including piezoelectric and triboelectric devices, as well as cellulose-based systems. These innovations provide new pathways for harvesting renewable energy from environmental sources, especially in flexible and wearable electronics. Another major focus is electrocatalytic wood, where Gao engineers wood-based single-atom electrocatalysts for applications like water splitting, targeting efficient and green hydrogen production. He also pioneers in multifunctional, self-healing wood-based materials that exhibit unique properties such as photothermal responsiveness, anti-icing, sensing, and environmental adaptability. These materials are particularly promising for use in extreme weather conditions and smart infrastructure. His research approach is distinctly bioinspired, aiming to replicate or enhance natural functionalities through molecular-level material engineering. By leveraging the structural anisotropy and hierarchical nature of wood, Gao is able to design novel platforms for catalysis and energy generation. His interests also span surface reconstruction mechanisms, dynamic active-site modulation, and intelligent material design, reflecting a deep commitment to creating smart, eco-friendly technologies.

Research Skills

Professor Gao possesses a robust and multifaceted skill set that bridges wood science, nanotechnology, materials engineering, and electrocatalysis. His expertise includes the fabrication and functionalization of wood-derived nanogenerators, capable of converting mechanical energy into electrical energy through triboelectric and piezoelectric effects. He is also skilled in the design and synthesis of single-atom electrocatalysts embedded in wood substrates, which are essential for enhancing the kinetics of water-splitting reactions. Gao’s technical toolkit includes advanced material characterization techniques such as SEM, TEM, XPS, Raman spectroscopy, and in situ operando methods, which he uses to explore catalytic mechanisms and interface dynamics. Additionally, he has substantial experience in surface modification strategies to imbue wood-based composites with photothermal, hydrophobic, and self-healing properties. His lab routinely integrates superhydrophobic coatings, carbonization techniques, and atomic doping to create responsive multifunctional materials. Professor Gao also has notable strengths in writing scientific publications, securing research grants, and patenting novel technologies. His collaborative work with international teams underscores his ability to work across disciplines and cultural contexts, making him an agile and resourceful scientist in the global research landscape.

Awards and Honors

Professor Likun Gao has garnered widespread recognition for his pioneering work in wood-based functional materials, receiving numerous prestigious awards that underscore his contributions to scientific innovation and academic excellence. In 2023, he was selected for China’s National Ten Thousand Talents Program for High-level Young Talents—one of the country’s highest honors for young researchers. A year prior, in 2022, he was awarded the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (CAST), an accolade reserved for researchers demonstrating extraordinary potential in advancing science and technology. He also received the Excellent Young Scholar Award from the Natural Science Foundation of Heilongjiang Province, recognizing his outstanding research in applied materials. Professor Gao has contributed to 3 book chapters and authored over 40 high-quality journal articles, several of which were highlighted as ESI Highly Cited Papers, journal cover stories, or Hot Papers. His intellectual property portfolio includes five patents, reflecting a commitment to practical innovation. These honors collectively affirm his leadership in the field and serve as milestones in a career defined by creativity, scientific rigor, and impactful problem-solving.

Conclusion

In summary, Professor Likun Gao stands as a dynamic and forward-thinking figure in the fields of materials science and wood-based nanotechnology. His research bridges the gap between nature and cutting-edge engineering, offering solutions for sustainable energy, smart materials, and functional composites. With a strong academic foundation, international exposure, and a commitment to interdisciplinary research, Gao has built a formidable reputation as a scientist, educator, and innovator. His work is not only scientifically profound but also socially and environmentally relevant, addressing global challenges like clean energy, climate resilience, and sustainable resource use. Through a combination of technical expertise, scholarly productivity, and leadership, Professor Gao has earned national and international recognition. As a young academic leader, he continues to push the boundaries of material innovation while fostering the next generation of researchers. With a track record of high-impact publications, prestigious awards, and cross-disciplinary collaboration, he is well-positioned to influence both academic advancements and industrial applications. The trajectory of his career reflects a deep-seated passion for discovery and a vision for materials that are both intelligent and sustainable.

Publications Top Notes

  1. Title: Wood-based triboelectric nanogenerator integrated with superhydrophobicity and photothermal-induced self-healing for high-temperature and high-humidity environment
    Authors: M. Wang, X. Li, D. Lv, P. He, C. Yang, J. Li, L. Gao*
    Year: 2025

  2. Title: High-Loading Single Atoms via Hierarchically Porous Nanospheres for Oxygen Reduction Reaction with Superior Activity and Durability
    Year: 2025

  3. Title: Self-supported N-doped carbon-coupled Ni–Co binary nanoparticle electrodes derived from bionic design of wood cell walls for durable overall water splitting
    Authors: C. Yang, R. Jin, Z. Liu, S. Li, D. Lv, J. Liu, J. Li, Z. Lin*, L. Gao*
    Journal: Journal of Materials Chemistry A
    Year: 2024

  4. Title: Collaborative integration of ultrafine Fe₂P nanocrystals into Fe, N, P-codoped carbon nanoshells for highly-efficient oxygen reduction
    Year: 2023
    Citations: 56

Quanbing Liu | Energy Sustainability | Best Researcher Award

Prof. Quanbing Liu | Energy Sustainability | Best Researcher Award

Professor of Guangdong University of Technology, China

Professor Quanbing Liu is a distinguished figure in the field of applied chemistry and electrochemical energy systems, currently serving as a full professor and doctoral supervisor at Guangdong University of Technology. With a strong foundation in applied chemistry, he has emerged as a key contributor to innovations in energy storage technologies, including lithium-ion, lithium-sulfur batteries, fuel cells, and supercapacitors. Dr. Liu has led numerous national and industrial research projects, with an extensive portfolio of 118 peer-reviewed scientific publications and 111 patents, showcasing his capacity for both academic excellence and practical innovation. His contributions have significantly advanced China’s energy technology sector. Recognized for his excellence, he holds prestigious titles such as Guangdong “Pearl River Scholar” and Guangzhou “Pearl River Science Star.” Dr. Liu has also served as a science advisor and expert reviewer for national science foundations and has held visiting scholar roles at leading international institutions. His robust collaboration with industry and government, combined with editorial roles in reputed scientific journals, reinforces his standing as a leading applied scientist. He is currently nominated for the Best Researcher Award for his pioneering contributions to the field of electrochemical energy.

Professional Profile

Education

Professor Quanbing Liu’s educational foundation in applied chemistry laid the groundwork for his successful research career. He earned his Bachelor of Science degree in Applied Chemistry from Wuhan Institute of Technology in 2007, where he developed a deep interest in chemical engineering and materials science. He then pursued doctoral studies at the South China University of Technology, completing his Ph.D. in Applied Chemistry in 2012. During his doctoral work, he focused on advanced materials and electrochemical energy systems, setting the stage for his subsequent innovations in lithium-ion battery technologies and energy storage solutions. His academic background has been instrumental in his ability to translate theoretical knowledge into high-impact industrial applications. This strong educational base continues to influence his current roles in mentoring doctoral students and leading breakthrough research at Guangdong University of Technology.

Professional Experience

Professor Liu’s professional journey is marked by a blend of academic, industrial, and governmental engagement. He began his career in research and development roles at the China Electric Power Research Institute (2012–2015), where he worked on lithium battery technologies. This was followed by a strategic role at Guanyu Battery (2015–2016), where he contributed to the commercialization of energy storage solutions. Since 2016, he has served as a Professor and Doctoral Supervisor at Guangdong University of Technology. He has also been a visiting scholar at the University of California, Riverside (UCR) and the Hong Kong University of Science and Technology (HKUST) in 2018, reflecting his international collaboration and research outreach. In 2017, he began serving in advisory roles for the National Natural Science Foundation of China (NSFC). His career trajectory demonstrates a rare ability to bridge academic theory and real-world application, making him an ideal candidate for awards recognizing applied scientific excellence.

Research Interests

Professor Liu’s research is centered on the development of advanced electrochemical energy storage and conversion systems, with a specific focus on lithium-ion and lithium-sulfur batteries, fuel cells, and supercapacitors. His work aims to address critical challenges in the new energy chemical industry by enhancing the energy density, cycle life, and safety of batteries and storage devices. A core component of his research involves material innovation—synthesizing novel electrode and electrolyte materials that improve electrochemical performance. He also investigates mechanisms at the atomic and molecular level using advanced characterization techniques. By integrating theory, experimentation, and industrial needs, Dr. Liu contributes to green energy transition efforts, supporting both electric mobility and large-scale energy storage applications. His projects often receive support from national and defense sectors, reflecting the strategic relevance of his research. Through multidisciplinary collaboration and cutting-edge science, his work plays a vital role in shaping the future of energy technology.

Research Skills

Professor Liu brings a comprehensive skill set in the domain of electrochemical materials and systems, combining deep scientific expertise with practical innovation capabilities. He is adept at battery design, electrode material synthesis, electrochemical performance analysis, and in-situ/operando characterization techniques. His ability to lead multi-disciplinary teams is evident in his coordination of national-level projects, where he integrates knowledge from chemistry, materials science, and electrical engineering. He possesses strong technical writing and presentation skills, having authored over 110 high-impact SCI papers and filed more than 100 patents. His industry exposure allows him to bridge the gap between laboratory findings and product development. Furthermore, Dr. Liu has experience with scientific instrumentation, safety protocols in battery testing, and lifecycle assessment methodologies. As a doctoral mentor and journal editorial board member, he demonstrates critical reviewing and mentoring skills, fostering academic rigor and ethical research standards in the scientific community. His strong analytical mindset and results-oriented approach make him a leader in applied scientific research.

Awards and Honors

Professor Quanbing Liu has received multiple prestigious recognitions for his outstanding contributions to science and technology. He is a recipient of the Guangdong “Pearl River Scholar” and Guangzhou “Pearl River Science Star” titles, awards that highlight top scientific talent in the region. His innovative research on lithium-ion battery systems earned him the Second Prize for Scientific Progress from Guangdong Province. Dr. Liu’s academic impact is further validated by his impressive citation record, with over 2,500 citations of his published works. He is regularly invited to serve as an expert reviewer for China’s Ministry of Science and Technology, the National Natural Science Foundation, and the Guangdong Department of Science and Technology. His achievements also include numerous invitations to editorial boards of high-ranking journals such as Chinese Chemical Letters, Rare Metals, and the Journal of Power Sources. These honors recognize not only his scientific innovation but also his influence on policy, education, and research leadership in China and abroad.

Conclusion

Professor Quanbing Liu embodies the qualities of an outstanding applied scientist—innovation-driven, industry-connected, and academically accomplished. His prolific output, including over 110 journal publications, 111 patents, and several high-impact research projects, stands as a testament to his dedication to advancing electrochemical energy systems. Through sustained collaborations with both international universities and domestic industry, Dr. Liu bridges the gap between fundamental research and practical application. His dual focus on scientific discovery and commercialization has helped shape battery technologies that serve real-world needs in energy storage and electric mobility. As an editorial board member, doctoral mentor, and governmental advisor, he continues to shape the broader research ecosystem in China. His work not only propels forward the field of electrochemical energy but also contributes to the nation’s strategic energy goals. In recognition of his transformative contributions and leadership in applied chemistry, Professor Liu is a deserving nominee for the Best Researcher Award under the Applied Scientist Awards program.

Publications Top Notes

  • Title: Construction of high-throughput interface phase using boron containing anions to regulate solvation structure and achieve high-performance sodium metal batteries
    Year: 2025

  • Title: Research progress on the structure design of nano-silicon anode for high-energy lithium-ion battery
    Year: 2025

  • Title: D-Band Center Modulation of Fe-Doping CoSe₂ to Accelerate Polysulfide Conversion for High-Performance Lithium–Sulfur Battery
    Year: 2025

  • Title: Heterogeneity-Segment Charge-Induced-Coupling Catalysis of Component-Selective-Type Covalent Organic Frameworks Interface toward Stabilizing Lithium Metal Anode
    Year: 2025
    Citations: 1

  • Title: Synthesis of a hollow MoSe₂@MXene anode material for sodium-ion batteries
    Year: 2025
    Citations: 1

  • Title: Functional gel materials for next-generation electrochromic devices and applications
    Type: Review
    Year: 2025

  • Title: Morphology engineering of hollow core@shell structured Co₃O₄@CuO-NiO for fast hydrogen release from ammonia borane methanolysis
    Year: 2025
    Citations: 11

  • Title: Small intestinal structure Ni₂P-CNTs@NHCF nanoreactor accelerating sulfur conversion kinetics for high performance lithium-sulfur batteries
    Year: 2025
    Citations: 3

  • Title: Tuning the Unloading and Infiltrating Behaviors of Li-Ion by a Multiphases Gradient Interphase for High-Rate Lithium Metal Anodes
    Year: 2025
    Citations: 1

  • Title: Sodium Phytate Cross-Linked Polyacrylic Acid as Multifunctional Aqueous Binder Stabilizes LiNi₀.₈Co₀.₁Mn₀.₁O₂ to 4.6 V

Jianhui Chen | Energy | Applied Scientist Award

Prof. Dr. Jianhui Chen | Energy | Applied Scientist Award

Professor at Hebei University, China

Dr. Jianhui Chen is a distinguished researcher and academic who has demonstrated significant leadership in the field of photovoltaic technology. Since joining the faculty of Hebei University in 2014, he has built an exemplary career that bridges fundamental scientific research and practical industrial application. Earning his Ph.D. from Hebei University in December 2017, Dr. Chen has amassed an impressive portfolio that includes over 50 peer-reviewed SCI papers published in prestigious journals such as Nature Communications, Advanced Materials, and ACS Energy Letters. He has led three national-level and seven provincial-level research projects, showcasing his capacity for high-level scientific management and innovation. His patented work and contributions to technical standards underscore his applied expertise, while his success in achieving 10 million RMB in technology transfer revenue reflects the commercial impact of his innovations. As a Group Leader at the Collaborative Innovation Center of Hebei Photovoltaic Technology, Dr. Chen is at the forefront of developing cutting-edge passivation and interface technologies for solar cells. His combination of academic excellence, applied research success, and industry influence positions him as a leading figure in China’s renewable energy and materials science sectors.

Professional Profiles

Education

Jianhui Chen’s academic journey is deeply rooted in Hebei University, where he embarked on a rigorous path of scientific inquiry and achievement. He joined the university as a faculty member in 2014 and simultaneously pursued his doctoral studies, culminating in the award of his Ph.D. in December 2017. His doctoral work focused on the physics of photovoltaic devices and the interface science critical to advancing solar energy technologies. Throughout his studies, Dr. Chen developed a robust theoretical foundation while also cultivating an applied engineering perspective, blending academic excellence with practical innovation. His education at Hebei University was marked by a multidisciplinary approach, integrating material science, electrical engineering, and electrochemistry. This diverse academic background provided the tools necessary for Dr. Chen to not only pursue high-impact scientific research but also translate findings into real-world applications. In addition to formal coursework and research, he engaged in collaborative projects, workshops, and technology transfer initiatives, further enriching his educational experience. The continuity between his role as a student and as a faculty member created a dynamic feedback loop, where teaching and learning informed one another. This unique academic trajectory has shaped Dr. Chen into a scholar-practitioner who drives both scientific discovery and industrial transformation.

Professional Experience

Dr. Jianhui Chen’s professional experience is marked by his dual commitment to academic research and industrial application in the field of photovoltaic technology. Since joining Hebei University’s faculty in 2014, he has steadily advanced to become a prominent Group Leader at the Collaborative Innovation Center of Hebei Photovoltaic Technology. In this role, he has spearheaded groundbreaking research projects and led cross-functional teams in the development of novel technologies for solar energy systems. His leadership has resulted in the successful execution of three national-level research initiatives and seven provincial or ministerial-level projects. Dr. Chen’s professional portfolio also includes three provincial and ministerial-level awards (second prize), attesting to the societal and technological relevance of his work. He has developed one technical standard and holds an impressive total of 60 patents, many of which have been licensed or transferred to industry partners. This has led to 10 million RMB in technology transfer revenue, demonstrating his effectiveness in bridging the gap between the laboratory and the production floor. With expertise spanning device physics, industrial process integration, and equipment innovation, Dr. Chen has not only contributed significantly to China’s solar technology landscape but has also mentored a new generation of scientists and engineers.

Research Interest

Dr. Jianhui Chen’s research interests lie at the cutting edge of photovoltaic technology, with a strong emphasis on the fundamental physics of organic-inorganic interfaces and their practical applications in electronic and optoelectronic devices. His pioneering work on the electrochemical passivation mechanism of silicon surfaces has opened new avenues in improving solar cell efficiency. Motivated by real-world industry challenges, such as edge defects caused by slicing industrial photovoltaic cells, Dr. Chen developed the “passivation liquid laser scribing defect re-passivation technology,” a breakthrough that addresses a critical bottleneck in solar cell manufacturing. He has since designed and implemented mass production solutions and passivation equipment that have been successfully adapted to commercial production lines. Dr. Chen is currently exploring innovative directions such as novel passivation technologies for solar cells and their industrialization; the purification of low-dimensional semiconductor materials and their integration into crystalline silicon technologies; and cost-effective strategies for electrochemical passivation in tandem solar cells. These research trajectories not only target performance enhancements and cost reduction but also aim to accelerate the deployment of renewable energy technologies globally. By blending fundamental science with practical engineering, Dr. Chen continues to shape the future of high-efficiency solar energy systems and energy-saving devices.

Research Skills

Dr. Jianhui Chen brings a comprehensive and refined skill set to his research in photovoltaic and semiconductor technologies. His core expertise includes solar cell device physics, with specialization in passivation processes, interface engineering, and the integration of organic-inorganic materials. He is highly proficient in advanced characterization techniques used to analyze surface chemistry, interface defects, and carrier dynamics, including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Dr. Chen is also adept in electrochemical methods and laser-assisted scribing technologies, which he has applied to develop defect re-passivation techniques that significantly improve solar cell efficiency. On the engineering side, he has hands-on experience designing custom equipment and adapting laboratory prototypes for industrial-scale production, a skill that has led to the successful commercialization of several technologies. His research is backed by strong project management abilities, allowing him to lead multidisciplinary teams across national and provincial projects. Additionally, Dr. Chen’s publication and patent track records demonstrate his ability to translate technical knowledge into high-impact scholarly and practical outputs. His ability to bridge theoretical modeling, experimental validation, and industrial application exemplifies the depth and versatility of his research capabilities.

Awards and Honors

Dr. Jianhui Chen’s work has been recognized with multiple prestigious awards that highlight both his academic excellence and practical impact in the field of renewable energy. He is a recipient of the Hebei Province Science Foundation for Distinguished Young Scholars, an honor that recognizes emerging leaders making significant contributions to science and technology. Additionally, he has secured funding from the National Natural Science Foundation of China (NSFC), affirming the national relevance and scientific merit of his research. Dr. Chen has led three national-level and seven provincial-level research projects, each contributing to China’s strategic goals in clean energy and technological innovation. His contributions have earned him three second-prize awards at the provincial and ministerial levels, validating his ability to deliver tangible outcomes through complex and multidisciplinary research. Furthermore, his success in technology transfer—achieving 10 million RMB in commercialization revenue—demonstrates the real-world impact of his innovations. With over 50 publications in top-tier journals and more than 60 patents to his name, Dr. Chen stands as a role model for researchers seeking to combine scientific rigor with societal and industrial relevance. His accolades reflect a career marked by excellence, innovation, and dedication to public and environmental good.

Conclusion

Dr. Jianhui Chen has established himself as a leading force in photovoltaic technology and materials science, distinguished by his ability to integrate theoretical insight with industrial application. From his early academic training to his current role as Group Leader at the Collaborative Innovation Center of Hebei Photovoltaic Technology, his career reflects a seamless fusion of research, innovation, and real-world impact. His development of the passivation liquid laser scribing technology exemplifies his unique approach: identifying critical industry challenges and responding with scientifically grounded, scalable solutions. His achievements—over 50 high-impact publications, 60 patents, multiple competitive grants, and millions in technology transfer revenue—highlight a career that transcends traditional academic boundaries. Dr. Chen’s ongoing research continues to address the twin challenges of efficiency and cost in solar energy, positioning him as a key contributor to the global shift toward sustainable energy systems. His ability to lead projects, mentor students, and collaborate with industry ensures his work remains both cutting-edge and deeply relevant. As the world increasingly turns to renewable energy, Dr. Jianhui Chen’s contributions will remain vital to shaping efficient, accessible, and scalable solar technologies for the future.

 Publications Top Notes

  1. Title: Solution processable in situ passivated silicon nanowires
    Author: Jianhui Chen
    Year: 2021

  2. Title: Ferroelectric-like organic–inorganic interfaces
    Author: Jianhui Chen
    Year: 2020

  3. Title: Carbon Nanotubes for Photovoltaics: From Lab to Industry
    Author: Jianhui Chen
    Year: 2020

  4. Title: A Polymer/Carbon‐Nanotube Ink as a Boron‐Dopant/Inorganic‐Passivation Free Carrier Selective Contact for Silicon Solar Cells with over 21% Efficiency
    Author: Jianhui Chen
    Year: 2020

  5. Title: Conductive Hole‐Selective Passivating Contacts for Crystalline Silicon Solar Cells
    Author: Jianhui Chen
    Year: 2020

  6. Title: Front and Back‐Junction Carbon Nanotube‐Silicon Solar Cells with an Industrial Architecture
    Author: Jianhui Chen
    Year: 2020

  7. Title: Zn(O,S)-based electron-selective contacts with tunable band structure for silicon heterojunction solar cells
    Author: Jianhui Chen
    Year: 2019

  8. Title: Establishment of a novel functional group passivation system for the surface engineering of c-Si solar cells
    Author: Jianhui Chen
    Year: 2019

  9. Title: Vacuum-Free, Room-Temperature Organic Passivation of Silicon: Toward Very Low Recombination of Micro-/Nanotextured Surface Structures
    Author: Jianhui Chen
    Year: 2018

  10. Title: Polymer/Si Heterojunction Hybrid Solar Cells with Rubrene:DMSO Organic Semiconductor Film as an Electron-Selective Contact
    Author: Jianhui Chen
    Year: 2018

  11. Title: Electron-Selective Epitaxial/Amorphous Germanium Stack Contact for Organic-Crystalline Silicon Hybrid Solar Cells
    Author: Jianhui Chen
    Year: 2018

  12. Title: Voc transient in silicon heterojunction solar cells with µc-SiOx:H window layers
    Author: Jianhui Chen
    Year: 2018

  13. Title: Hafnium Thin Film as a Rear Metallization Scheme for Polymer/Silicon Hybrid Solar Cells
    Author: Jianhui Chen
    Year: 2018

  14. Title: Low work function intermetallic thin film as a back surface field material for hybrid solar cells
    Author: Jianhui Chen
    Year: 2018

Seyedeh HOSNA Talebian | Energy Sustainability | Best Researcher Award

Assist. Prof. Dr. Seyedeh HOSNA Talebian | Energy Sustainability | Best Researcher Award

Assistant Professor at Ilam University, Iran

Seyedeh Hosna Talebian is a dynamic and dedicated researcher with a strong foundation in agricultural sciences, pest management, and entomology. With a passion for advancing sustainable agricultural practices, she has consistently contributed to research that supports ecological balance while enhancing crop productivity. Her work reflects a strong blend of field expertise and laboratory precision, enabling her to effectively tackle real-world agricultural challenges. Seyedeh Hosna possesses a deep interest in the biological control of pests and is particularly skilled in identifying and analyzing pest-host interactions. She is known for her meticulous attention to detail, robust analytical abilities, and a commitment to scientific rigor. Throughout her academic and professional journey, she has displayed strong leadership and collaborative skills, working effectively in multidisciplinary teams. Her ability to communicate scientific findings to both technical and non-technical audiences makes her a valuable contributor to both academia and the agricultural industry. She actively participates in conferences, workshops, and scholarly networks to stay current with emerging trends and innovations in her field. Her academic background, combined with hands-on experience in integrated pest management, positions her as a promising researcher dedicated to promoting sustainable agriculture through science-based solutions.

Professional Profiles

Scopus Profile

Education

Seyedeh Hosna Talebian earned her Ph.D. in Agricultural Entomology from the University of Tehran, Iran, one of the region’s premier institutions for agricultural sciences. Her doctoral research focused on the behavioral ecology and population dynamics of key agricultural pests, with a particular emphasis on sustainable pest control strategies. During her Ph.D., she published several peer-reviewed articles and presented her findings at national and international scientific conferences. She also completed her Master’s degree in Agricultural Entomology from the same university, where her thesis investigated the efficacy of natural enemies in controlling pest populations in horticultural systems. Prior to her postgraduate studies, she obtained a Bachelor of Science degree in Plant Protection from Isfahan University of Technology, where she developed a foundational understanding of integrated pest management, plant pathology, and insect taxonomy. Throughout her academic journey, she has been recognized for her academic excellence, consistently ranking among the top students in her cohort. In addition to her coursework, she actively participated in seminars, journal clubs, and lab rotations, which enriched her knowledge and provided hands-on experience in various entomological techniques. Her diverse academic background has equipped her with the theoretical knowledge and practical skills necessary to contribute meaningfully to pest management research.

Professional Experience

Seyedeh Hosna Talebian has accumulated a wealth of professional experience in both academic and research settings, focusing primarily on entomology, pest control, and sustainable agriculture. During her Ph.D., she worked as a research assistant in multiple government-funded projects aimed at developing environmentally friendly pest management strategies for major crops in Iran. In this role, she was responsible for conducting extensive fieldwork, sampling and identifying insect species, and evaluating the impact of biological control agents in different agroecosystems. She also collaborated with agricultural extension services to train local farmers on pest identification and eco-friendly control methods. In addition, she served as a teaching assistant for undergraduate courses in entomology and plant protection, where she led laboratory sessions and assisted in curriculum development. Her teaching experience helped sharpen her communication and mentoring skills. Following her Ph.D., she undertook a postdoctoral research position at a national research institute, where she worked on enhancing the effectiveness of native parasitoids in managing invasive pests. Her work involved designing laboratory and field experiments, statistical data analysis, and publishing scientific findings in international journals. Her ability to bridge applied and theoretical research makes her a valuable asset in the pursuit of sustainable pest control solutions.

Research Interest

Seyedeh Hosna Talebian’s research interests lie at the intersection of insect ecology, integrated pest management (IPM), and biological control. She is deeply intrigued by the intricate dynamics between pests, their natural enemies, and environmental factors, and aims to use this understanding to develop sustainable pest control strategies. Her doctoral and postdoctoral work primarily focused on the behavioral and ecological mechanisms that influence pest population dynamics, with special emphasis on parasitoid-host interactions. She is particularly interested in exploring the use of indigenous biological control agents as a viable alternative to chemical pesticides. Furthermore, she is passionate about improving IPM programs by incorporating ecological modeling, risk assessment tools, and field-based experiments to optimize pest control practices. Another area of her research involves studying invasive species and their impact on native ecosystems and agriculture. By identifying vulnerabilities in invasive pest populations, she hopes to contribute to the development of early detection and rapid response strategies. Her long-term goal is to contribute to global food security by promoting pest management approaches that are both effective and environmentally responsible. Seyedeh Hosna is committed to conducting interdisciplinary research that informs policy-making and supports the transition to sustainable agricultural systems.

Research Skills

Seyedeh Hosna Talebian possesses a comprehensive set of research skills that encompass both field-based and laboratory methodologies in entomology and pest management. She is proficient in insect sampling, identification, and dissection, as well as in designing and conducting behavioral assays to study insect activity and host preferences. Her fieldwork experience includes the deployment of traps, monitoring pest populations, and evaluating the effectiveness of biological control agents under natural conditions. In the laboratory, she is skilled in rearing insect colonies, performing controlled experiments, and using microscopy and imaging tools for morphological analysis. She is well-versed in experimental design, statistical data analysis, and software tools such as SPSS, R, and SAS, which she uses to interpret complex ecological data. Her expertise also includes GIS mapping for spatial analysis of pest distribution. Seyedeh Hosna is adept at writing research proposals, preparing scientific manuscripts, and presenting findings at academic conferences. She maintains meticulous records and follows rigorous scientific protocols, ensuring the reproducibility and reliability of her research. Her collaborative skills enable her to work effectively with multidisciplinary teams, while her commitment to continuous learning drives her to stay updated on new techniques and trends in pest management and ecological research.

Awards and Honors

Throughout her academic and professional career, Seyedeh Hosna Talebian has received numerous awards and honors in recognition of her excellence in research and academic achievement. During her Ph.D. studies at the University of Tehran, she was awarded a prestigious doctoral fellowship granted to top-performing graduate students in agricultural sciences. Her outstanding performance earned her the university’s “Best Researcher Award” for two consecutive years, acknowledging her contributions to pest ecology and sustainable agriculture. She was also the recipient of the “Young Entomologist Award” at the Iranian National Entomological Congress, where she presented innovative research on parasitoid-host dynamics. Her master’s thesis received the department’s “Top Thesis Award” for its practical implications in biological pest control. Additionally, she has been granted multiple travel fellowships to attend international conferences and workshops, including events held by the International Organisation for Biological Control (IOBC). Seyedeh Hosna has also been recognized for her service in mentoring undergraduate students and her contributions to community outreach programs focused on integrated pest management. These honors reflect her dedication, academic excellence, and impact in the field of entomology, solidifying her reputation as an emerging leader in sustainable pest control research.

Conclusion

Seyedeh Hosna Talebian embodies the qualities of a passionate, skilled, and forward-thinking researcher in the field of agricultural entomology. Her deep-rooted commitment to sustainable agriculture and her pursuit of innovative pest management solutions have guided her academic and professional journey. Through rigorous research, effective collaboration, and community engagement, she has consistently contributed to scientific advancements that balance agricultural productivity with ecological integrity. Her interdisciplinary approach, combining field studies, laboratory experimentation, and data analysis, demonstrates her adaptability and scientific rigor. Moreover, her ability to translate research findings into actionable insights for farmers and policymakers highlights her broader impact on society. As she looks ahead, Seyedeh Hosna aspires to expand her research to a global stage, collaborate with international institutions, and contribute to the development of pest management strategies that are environmentally sound, economically viable, and socially responsible. With her strong academic foundation, practical experience, and unwavering dedication to science, she is poised to make meaningful contributions to global food security and sustainable development. Seyedeh Hosna Talebian represents the next generation of scientists committed to fostering agricultural systems that are both productive and environmentally resilient.

 Publications Top Notes

  • Title: Adsorption behavior of in-house developed CO₂-philic anionic surfactants

  • Authors: Seyedeh Hosna Talebian, Muhammad Sagir

  • Year: 2024

Sandra Baroudi | Sustainability | Best Researcher Award

Dr. Sandra Baroudi | Sustainability | Best Researcher Award

Assistant Professor At Zayed University, United Arab Emirates

Dr. Sandra Baroudi (PhD, FHEA) is an accomplished academic and researcher specializing in education leadership, management, and policy. She holds a Doctor of Philosophy in Education Studies from the British University in Dubai and has extensive experience in higher education, research, and professional development. Currently serving as an Assistant Professor at Zayed University, she is actively involved in interdisciplinary teaching, research committees, and mentorship programs. Dr. Baroudi has contributed to the advancement of sustainable education, faculty development, and leadership in education. She has received multiple awards for her contributions to academia and holds the prestigious UAE Golden Visa in recognition of her impact. Her research focuses on educational innovations, sustainability, and teacher development. She has published extensively in peer-reviewed journals and has co-edited books on transformative leadership. Dr. Baroudi is also a co-founder and CEO of Eduvate Professional Development and Training Institute, highlighting her dedication to advancing education beyond academia.

Professional Profiles

Education

Dr. Sandra Baroudi has a strong educational foundation in leadership and educational policy. She earned her PhD in Education Studies, with a specialization in Leadership, Management, and Policy from the British University in Dubai in 2019. Prior to that, she completed her Master’s Degree in Educational Leadership and Administration at Zayed University in 2016. She also holds a Bachelor’s Degree in Social Sciences from Lebanese University, Beirut. Dr. Baroudi has actively pursued professional development, obtaining numerous certifications in areas such as learning experience design, sustainability mindset, AI-driven education, instructional design, and quality assurance in teaching. Notable certifications include the Harvard Business School Online’s Design Thinking and Innovation and multiple Quality Matters accreditations. Her commitment to continuous learning ensures she remains at the forefront of educational advancements, integrating cutting-edge methodologies into her teaching and research.

Professional Experience

Dr. Baroudi has held key academic positions across various higher education institutions. She is currently an Assistant Professor at Zayed University’s College of Interdisciplinary Studies, where she teaches courses such as Strategic Learning and Growth, Systems and Society, and Deriving Insights from Evidence. She previously served as an Assistant Professor in the College of Education at Zayed University, teaching and mentoring undergraduate students. Her professional journey also includes a tenure as a Visiting Faculty at UAE University, where she instructed courses on educational research and professional ethics. Additionally, Dr. Baroudi has been actively involved in mentoring and training in-service teachers through programs like the Ta’Alouf Program for Career-Based Teacher Development and the Sustainable Upskilling Program for the National Charity Schools.

Research Interests

Dr. Baroudi’s research interests center around educational leadership, policy reform, sustainability in education, and faculty development. She explores innovative teaching methodologies, digital transformation in education, and the integration of sustainability principles in academic curricula. Her research also examines teacher professional development, student learning experiences, and the role of leadership in fostering an inclusive and dynamic educational environment. As Head of Research for the UN PRME Chapter Middle East, she actively contributes to global discussions on sustainability and education. Her work aims to bridge the gap between academic theory and practical implementation, ensuring that research findings translate into meaningful improvements in the education sector.

Research Skills

Dr. Baroudi possesses a comprehensive set of research skills, including qualitative and quantitative analysis, systematic literature reviews, and meta-analysis. She is proficient in using analytical tools such as SPSS and Hyper Research for data coding and interpretation. Her expertise in research ethics, proposal evaluations, and peer review processes enables her to contribute significantly to academic publishing and faculty mentorship. She has successfully led multiple research projects, collaborated on international studies, and authored numerous peer-reviewed journal articles. Her methodological rigor and ability to contextualize research findings make her a valuable contributor to interdisciplinary education research. Additionally, as a guest editor for journals like Society & Business Review, she plays a key role in shaping academic discourse on sustainability and education.

Awards and Honors

Dr. Baroudi has been recognized for her outstanding contributions to academia and research. She was awarded the Fellowship for Advanced Higher Education (FHEA) by Advance HE-UK in 2021. In 2022, she received the Certificate of Achievement from Zayed University for exceeding expectations in the academic year 2021-2022. Her dedication to faculty development and student mentorship has also earned her multiple accolades, including recognition for her role in advancing quality assurance in higher education. She holds the UAE Golden Visa, an honor that underscores her significant impact on the country’s education sector. Through her leadership in research committees, curriculum development, and mentorship programs, she continues to shape the future of education in the UAE and beyond.

Conclusion

Dr. Sandra Baroudi is a distinguished academic, researcher, and educational leader committed to driving transformative change in higher education. Her extensive experience in teaching, research, and professional development underscores her dedication to fostering an innovative and sustainable learning environment. With a strong foundation in educational leadership and policy, she actively contributes to shaping the future of education through research, mentorship, and interdisciplinary collaboration. Her expertise in faculty development, digital transformation, and sustainability education ensures that she remains at the forefront of educational advancements. Through her role at Zayed University and as CEO of Eduvate Professional Development and Training Institute, she continues to inspire and empower educators, students, and policymakers alike. Dr. Baroudi’s contributions to academia and her unwavering commitment to educational excellence position her as a leading figure in the global education landscape.

 Publications Top Notes

  1. Driving transformation in higher education: Exploring the process and impact of educational innovations for sustainability through interdisciplinary studies

    • Authors: S. Baroudi, Sandra; A. ElSayary, Areej

    • Year: 2024

    • Citations: 3

  2. Editorial Preface

    • Authors: S. Baroudi, Sandra; M.D. Lytras, Miltiadis D.

Shedrack Mgeni | Energy Sustainability | Applied Research Award

Mr. Shedrack Mgeni | Energy Sustainability | Applied Research Award

Mkwawa University, Tanzania

Shedrack Thomas Mgeni is a dedicated and accomplished Senior Teacher of Chemistry and Biology with over 17 years of teaching experience. He is passionate about bioenergy research, with a particular focus on bioethanol production from fruit wastes as an alternative energy source. Mgeni holds a Master of Science (Biology) with Education from the University of Dar es Salaam, Tanzania, earned in 2024. His Master’s research, under the supervision of Dr. Lewis Atugonza Mtashobya, Dr. Jovine Kamuhabwa Emmanuel, and Dr. Herieth Rhodes Mero, explored bioethanol production from fruit wastes. He also holds a Bachelor of Science in Chemistry and Biology with Education from Sokoine University of Agriculture (2015) and a Diploma in Secondary Science Education from Morogoro Teacher’s College (2010). Currently, Mgeni teaches at Miyuji Secondary School, Dodoma, where he also serves as the Academic Master and Sports & Games Master. He is widely published in biofuels research and is recognized for his innovative work on circular economy and renewable energy solutions. His dedication to advancing sustainable energy and promoting environmental conservation earned him the University of Dar es Salaam’s Distinguished Innovator of the Year award in 2024.

Professional Profiles

Education

Shedrack Thomas Mgeni has an extensive academic background, showcasing his dedication to science and education. He began his educational journey at Lugoda Primary School in Tanzania (1994–2000), followed by secondary education at Kibao Secondary School (2001–2004) and Kidugala Lutheran Seminary (2005–2007). In 2010, he earned a Diploma in Secondary Science Education (Chemistry and Biology) from Morogoro Teachers College. Building on this foundation, he obtained a Bachelor of Science (Chemistry & Biology) with Education from Sokoine University of Agriculture in 2015. In 2024, he completed his Master of Science (Biology) with Education at the University of Dar es Salaam. His postgraduate research focused on bioethanol production from fruit wastes as a renewable energy source. His diverse educational background reflects his strong foundation in both teaching and scientific research, equipping him with expertise in education, bioenergy, and sustainability.

Professional Experience

Shedrack Thomas Mgeni has an extensive teaching career spanning over 17 years, coupled with leadership roles and research experience. He began as a teacher at Matola Secondary School (2007–2010) in Njombe, where he taught Chemistry and Biology. He later became Head of the Chemistry and Biology departments (2010–2011), overseeing curriculum development and departmental activities. Mgeni also worked as a part-time teacher at St. Gertrude Secondary School in Njombe (2010–2011). His teaching practice (T.P) experiences include Bihawana High School (2013), Morogoro Teachers College (2014), and Mbeya Day High Secondary School (2015). From 2011 to 2015, he taught at Mabatini Secondary School, before moving to Kifanya Secondary School (2016–2021). In 2021, he joined Miyuji Secondary School in Dodoma, where he currently teaches Chemistry and Biology. Since 2022, he has served as the Academic Master, overseeing academic activities, and in 2024, he took on the role of Sports & Games Master, organizing sports events and fostering students’ extracurricular growth.

Research Interests

Shedrack Thomas Mgeni’s primary research interests lie in bioenergy generation, particularly bioethanol production from fruit wastes. His work focuses on exploring renewable energy sources and promoting circular economy practices. Through his research, Mgeni aims to develop sustainable bioenergy alternatives to fossil fuels, contributing to cleaner energy solutions and reducing environmental pollution. His recent studies involve using fruit waste juice enhanced with fermentable sugars, such as sorghum and millet, to increase bioethanol yields. Additionally, he is interested in converting bioethanol into value-added products, promoting waste recycling, and contributing to environmental conservation. Mgeni is committed to advancing biofuel technology and promoting sustainable practices, which aligns with global efforts toward cleaner and greener energy sources. His research directly contributes to renewable energy innovation and circular economy advancement.

Research Skills

Shedrack Thomas Mgeni possesses a diverse set of research skills, particularly in bioenergy production and sustainable waste management. His expertise includes bioethanol production processes, fermentation techniques, and bio-waste recycling. He is proficient in laboratory experimentation, biofuel yield optimization, and the application of sorghum and millet as fermentable sugar enhancers. Mgeni has extensive skills in experimental design, data analysis, and scientific documentation, demonstrated by his publications in peer-reviewed journals. His technical skills extend to biofuel characterization, evaluating the efficiency and quality of bioethanol produced from fruit wastes. Additionally, Mgeni is adept at academic writing, having co-authored multiple journal articles and review papers. His skills in presenting research findings at conferences, such as the University of Dar es Salaam Research and Innovation Week, showcase his ability to effectively communicate scientific results.

Awards and Honors

Shedrack Thomas Mgeni is recognized for his outstanding contributions to bioenergy research and innovation. In 2024, he was awarded the First Winner for Best Innovator of the Year during the 9th University of Dar es Salaam Research and Innovation Week at Mkwawa University College of Education. His award-winning project, titled Preparation of Value-Added Products Using Bioethanol Produced from Fruit Wastes, highlighted his innovative approach to renewable energy production. Additionally, Mgeni received the First Winner for Best Innovator of the Year award at the 9th University of Dar es Salaam Research and Innovation Week held from June 5th to 7th, 2024, for the same project. These prestigious awards underscore his significant contributions to sustainable energy research and his impact on promoting environmentally friendly technologies. His recognition as a distinguished innovator showcases his dedication to advancing bioenergy solutions.

Conclusion

Shedrack Thomas Mgeni is a highly accomplished educator and researcher with a strong commitment to advancing sustainable energy solutions. His expertise in bioethanol production from fruit wastes, coupled with his dedication to promoting circular economy practices, highlights his impactful contributions to renewable energy research. With over 17 years of teaching experience, Mgeni plays a vital role in shaping the academic and extracurricular development of students at Miyuji Secondary School. His numerous publications in biofuels research reflect his scholarly excellence and scientific impact. Through his innovative projects, Mgeni has demonstrated a keen ability to develop practical solutions to environmental challenges. His recognition as the Best Innovator of the Year underscores his influence in bioenergy innovation. Mgeni’s ongoing work in biofuel generation and his passion for education position him as a key advocate for cleaner energy and sustainable practices, driving positive change in both academia and society.

 Publications Top Notes

  1. Title: Bioethanol production from fruit wastes juice using millet and sorghum as additional fermentable sugar

    • Authors: Shedrack Thomas Mgeni, Lewis Atugonza Mtashobya, Jovine Kamuhabwa Emmanuel

    • Year: 2025
  2. Title: Potential Contributions of Banana Fruits and Residues to Multiple Applications: An Overview

    • Authors: Jovine Kamuhabwa Emmanuel, Lewis Atugonza Mtashobya, Shedrack Thomas Mgeni

    • Year: 2025
  3. Title: Bioethanol production from pineapple fruit waste juice using bakery yeast

    • Authors: Shedrack Thomas Mgeni, Lewis Atugonza Mtashobya, Jovine Kamuhabwa Emmanuel

    • Year: 2024
  4. Title: The prospect of fruit wastes in bioethanol production: A review

    • Authors: Shedrack Thomas Mgeni, Herieth Rhodes Mero, Lewis Atugonza Mtashobya, Jovine Kamuhabwa Emmanuel

    • Year: 2024