M. R. Rajan | Nanoparticles | Excellence in Research Award

Prof. Dr. M. R. Rajan | Nanoparticles | Excellence in Research Award

The Gandhigram Rural Institute- Deemed to be University | India

Prof. Dr. M. R. Rajan is a distinguished researcher whose work spans aquaculture toxicology, green nanotechnology, environmental biotechnology, and fish health management. His research primarily explores the synthesis, characterization, and safe application of diverse metal and metal oxide nanoparticles—including selenium, silver, copper oxide, manganese oxide, magnesium oxide, chromium oxide, aluminum oxide, zinc oxide, carbon quantum dots, and graphene quantum dots—and their physiological impacts on numerous freshwater fish species. A major focus of his work is the incorporation of nanoparticles into fish diets to enhance growth performance, haematological and biochemical responses, antioxidant activity, and overall aquatic health, helping advance the emerging field of nanonutrition. He contributes significantly to the development of green-synthesized nanoparticles using plant extracts and waste-derived materials, assessing their antibacterial, larvicidal, and biomedical potentials, as well as their suitability for aquaculture applications. His studies also address key environmental challenges, including wastewater toxicity, tannery effluent pollution, and eco-friendly remediation strategies, while other works explore the role of probiotic gut microbiota in improving fish immunity and disease resistance. With 44 scientific publications and more than 220 citations, Prof. Dr. M. R. Rajan research offers valuable insights into sustainable aquaculture practices, nanoparticle biosafety, environmental health, and innovative nanobiotechnological solutions for aquatic systems.

Profile: Scopus

Featured Publications

  • Varghese Edwin Hillary, V., Dayana Senthamarai, M., Antony Ceasar, A., Ignacimuthu, S., & Rajan, M. R. (2025). Characterization of a silver nanoparticle derived from the fruit peel of Myristica fragrans on mosquito control. International Journal of Tropical Insect Science.

  • Dayana Senthamarai, M., Edwin Hillary, V., Rajan, M. R., & Antony Ceasar, A. (2025). Phyto-synthesis of selenium nanoparticles using Mentha spicata extract and its larvicidal and antibacterial activities. Journal of Asia-Pacific Entomology, 28(1), 102370.

  • Malavika, V., Rajan, M. R., Soundhariya, N., Prethika, J., & Chandrakala, V. (2025). Comparative evaluation of chemically and green-synthesised carbon quantum dots for aquatic applications. Journal of Environmental Nanotechnology, 14(3), 505–515.

  • Chinnadurai Kaleeswaran, M., Dayana Senthamarai, M., & Rajan, M. R. (2024). Evaluation of disparate multiplicities of copper oxide nanoparticles integrated feed on the growth and hematology of koi carp. Journal of Toxicological Studies, 2(1), 497.

  • Dayana Senthamarai, M., Rekha, M., & Rajan, M. R. (2024). Incorporation of nano selenium in fish diet and assessment of growth performance and biochemical criteria of Labeo rohita. Journal of Environmental Nanotechnology, 13(1), 01–09.*

 

Zheng Liu | Material Science | Best Researcher Award

Mr. Zheng Liu | Material Science | Best Researcher Award

Assistant Professor at College of Material Science and Engineering, State Ker Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, China

Zheng Liu is an emerging researcher specializing in materials science with a particular focus on glass composites, sealing technologies, and structural relaxation mechanisms. Currently serving as a Research Associate at the State Key Laboratory of Materials Low-Carbon Recycling, College of Material Science and Engineering, Beijing University of Technology, Dr. Liu is committed to advancing the fundamental understanding and practical performance of glass-to-metal sealing systems. His academic path began with a Bachelor’s degree in Powder Metallurgy at Central South University and was furthered by a rigorous doctoral program at the Institute of Nuclear and New Energy Technology, Tsinghua University. With a strong foundation in both theoretical analysis and applied research, he has authored numerous impactful publications in top-tier journals such as the Journal of the American Ceramic Society, Ceramics International, and Physical Chemistry Chemical Physics. His research has garnered recognition and funding from the National Natural Science Foundation of China. Zheng Liu is driven by a mission to enhance material reliability in high-temperature and energy environments, and he continues to contribute to China’s innovation landscape through both research excellence and collaborative efforts in materials engineering.

Professional Profile

Education

Zheng Liu pursued his academic training at two of China’s most prestigious institutions, establishing a robust interdisciplinary foundation in materials science. He earned his Bachelor’s degree in Powder Metallurgy from the Powder Metallurgy Research Institute at Central South University, Changsha, between 2016 and 2020. During this period, he gained essential knowledge in advanced ceramics, metallurgy, and composite materials, which laid the groundwork for his future specialization in sealing and glass systems. To deepen his scientific rigor and research capabilities, he then enrolled in a Ph.D. program at the Institute of Nuclear and New Energy Technology, Tsinghua University, from September 2020 to June 2025. His doctoral work focused on the atomic-level dynamics of glass and glass-metal interfaces, a subject vital to energy applications and thermal engineering. Through his education, he acquired sophisticated analytical skills and became proficient in spectroscopic and computational tools, all of which are critical to understanding complex glass behaviors. These formative academic experiences equipped him with a unique blend of theoretical insight and practical proficiency, empowering him to tackle key challenges in low-carbon material development and glass sealing technologies.

Professional Experience

Zheng Liu began his professional research career in July 2025 as a Research Associate at the Beijing University of Technology, affiliated with the State Key Laboratory of Materials Low-Carbon Recycling in the College of Material Science and Engineering. His role involves leading and collaborating on critical projects related to glass-to-metal sealing, structural relaxation, and thermal-mechanical behavior in advanced materials. In this capacity, Dr. Liu applies his deep knowledge of borosilicate glass systems and their interaction with metallic substrates, particularly under high-temperature conditions. His responsibilities also include conducting photoluminescence spectroscopy, finite-element modeling, and thermal analysis to study stress evolution and interfacial behavior. Working in a multidisciplinary research environment, he coordinates with fellow scientists and engineers to translate theoretical knowledge into materials that meet industrial demands for efficiency, durability, and environmental sustainability. Prior to this appointment, his doctoral work was enriched with hands-on research projects and collaborations across materials science labs, where he demonstrated the ability to manage complex experiments and publish impactful findings. His early career reflects a strong trajectory of research commitment, innovative thinking, and technical excellence, setting the stage for significant contributions in the field of structural materials and sustainable engineering.

Research Interest

Zheng Liu’s research interests lie at the intersection of materials science, nuclear engineering, and applied physics, with a focus on glass/glass composite systems, advanced sealing materials, and structural relaxation phenomena. He is particularly intrigued by the mechanical behavior of glass-to-metal seals under thermal and mechanical stress, aiming to enhance their stability, performance, and longevity. A significant portion of his research explores the residual stress mechanisms in glass composites, with an emphasis on how glass solidification and interfacial bonding affect stress distribution. His investigations extend into photoluminescence spectroscopy as a tool for detecting microregion stress and the use of finite-element modeling for predictive stress analysis. Dr. Liu is also committed to understanding how additives like alumina nanoparticles influence glass properties at the atomic and structural levels. These interests are deeply aligned with developing next-generation sealing materials for nuclear, aerospace, and energy systems. His current work contributes to the broader scientific goal of optimizing the thermal-mechanical integration of dissimilar materials. Driven by real-world applications and sustainability concerns, Dr. Liu seeks to advance low-carbon material solutions that can withstand harsh environments while maintaining functional integrity over extended service lives.

Research Skills

Zheng Liu possesses a comprehensive suite of research skills that underpin his cutting-edge work in materials science. He is proficient in a wide range of experimental techniques including photoluminescence spectroscopy, X-ray diffraction, thermal analysis (DSC/TGA), and electron microscopy (SEM/TEM), which he uses to characterize material interfaces and microstructural behavior. Additionally, he has strong expertise in finite-element modeling and simulation tools to investigate stress distribution and failure mechanisms in glass-to-metal seals. His ability to design and implement experiments on glass solidification and bonding behavior is supported by his deep understanding of structural relaxation at atomic and macroscopic scales. Zheng Liu is also adept at statistical analysis and data interpretation, ensuring the rigor and reliability of his findings. His experience with high-temperature furnace systems and controlled atmosphere conditions enables him to replicate industrial sealing environments accurately. Beyond technical skills, Dr. Liu has honed his scientific writing, grant proposal development, and collaborative research management, allowing him to contribute effectively to multidisciplinary teams. With a focus on precision, innovation, and problem-solving, his skill set is aligned with the demands of modern materials research and application in energy and structural systems.

Awards and Honors

Zheng Liu’s promising research career has already been recognized with prestigious support and accolades. Most notably, he secured funding from the National Natural Science Foundation of China (Grant No. 523B2008) for the period of May 2024 to December 2025. This grant is a testament to the national recognition of his innovative work in glass-to-metal seals and low-carbon materials. His scientific contributions have resulted in the publication of eleven peer-reviewed articles in high-impact journals such as Journal of the American Ceramic Society, AIP Advances, and Ceramics International. Several of these papers have addressed critical issues in stress distribution and interfacial bonding, providing novel insights into thermal-mechanical behavior in composite materials. His ability to consistently publish significant research has earned him a growing reputation among peers and senior academics alike. During his doctoral and undergraduate studies, he was also likely to have received institutional recognitions for academic excellence and research engagement, although specific honors were not explicitly detailed. His early-career achievements position him as a rising figure in the field of functional materials for high-performance and energy-critical applications.

Conclusion

Zheng Liu stands out as a talented early-career researcher with a focused expertise in glass composites and sealing technologies, poised to make lasting contributions to the field of materials science. His academic foundation, built at Central South University and Tsinghua University, is complemented by a robust portfolio of research that bridges theoretical investigation with practical application. Now serving as a Research Associate at the Beijing University of Technology, he applies his skills to address critical challenges in low-carbon materials and energy systems. His publications reveal a consistent dedication to solving real-world problems, particularly in the optimization of glass-to-metal seals and structural integrity under stress. Funded by the National Natural Science Foundation of China, Zheng Liu continues to build a body of work that is both scientifically rigorous and industrially relevant. With strong analytical abilities, technical proficiency, and a clear vision for sustainable materials innovation, he represents the next generation of scholars committed to transforming the way we understand and engineer functional materials. His career trajectory suggests a future rich with discovery, collaboration, and meaningful societal impact in the domain of energy-efficient and high-performance materials.

Publications Top Notes

  1. Title: Assessing residual stress generation and entrapment in glass-to-metal seals: role of glass solidification during the cooling process
    Authors: Keqian Gong, Chao Zhou, Zheng Liu, Zifeng Song, Zhangjing Shi, Weisong Zhou, Yong Zhang
    Year: 2025

  2. Title: Atomic origin and dynamics of structural relaxation in borosilicate glass below glass transition temperature
    Authors: Zheng Liu, Keqian Gong, Zifeng Song, Chao Zhou
    Year: 2025

  3. Title: Strain rebound and inhomogeneity in glass-to-metal seals: Radial vs axial strain evolution
    Authors: Keqian Gong, Zheng Liu, Zifeng Song, Chao Zhou, Zhangjing Shi, Siyue Nie, Weisong Zhou, He Yan, Zhichun Fan, Yong Zhang
    Year: 2025

  4. Title: Revealing the effect of alumina addition on the residual stress in glass-to-metal seals via photoluminescence spectroscopy
    Authors: Keqian Gong, Zheng Liu, Yangyang Cai, Zifeng Song, Chao Zhou, Jing Liu, Yuna Zhao, Yong Zhang
    Year: 2024

  5. Title: Sealing Ni-Cr/Ni-Al alloys with borosilicate glass: Bonding strength, sealing interface, and fracture behavior
    Authors: Zheng Liu, Chao Zhou, Keqian Gong, Yanfei Sun, Cheng Ren, Zifeng Song, Zhangjing Shi, Yong Zhang
    Year: 2024

  6. Title: Assessment of residual stress evolution in glass-to-metal seals amid heating process: Insights from in situ observations and finite-element analysis
    Authors: Keqian Gong, Zifeng Song, Yangyang Cai, Zheng Liu, Zhangjing Shi, Chao Zhou, He Yan, Yong Zhang
    Year: 2024

  7. Title: Strength, microstructure and bonding mechanism of borosilicate glass-to-SA105 carbon steel seals
    Authors: Zheng Liu, Yangyang Cai, Keqian Gong, Chao Zhou, Chen Wang, Yuna Zhao, Yong Zhang
    Year: 2024

  8. Title: Photoluminescence spectroscopy to detect microregion stress distribution in glass‐to‐metal seals
    Authors: Zheng Liu, Keqian Gong, Yangyang Cai, Zhen Chen, Yong Zhang
    Year: 2024

  9. Title: Calibration for determination of compressive stress in glass‐to‐metal seals via photoluminescence spectroscopy
    Authors: Zheng Liu, Yangyang Cai, Keqian Gong, Weisong Zhou, Fengen Chen, Yong Zhang
    Year: 2024

  10. Title: Optimization mechanism and high-temperature properties of Al₂O₃/Cu-reinforced sealing glass
    Authors: Yangyang Cai, Zheng Liu, Keqian Gong, He Yan, Yuna Zhao, Yong Zhang
    Year: 2024

  11. Title: Effects of Al₂O₃ nanoparticles on the properties of glass matrix composites for sealant applications
    Authors: Zheng Liu, Keqian Gong, Chao Zhou, Zifeng Song, Yong Zhang
    Year: 2023

Cavus Falamaki | Nanotechnology | Scientific Contribution Award

Prof. Cavus Falamaki | Nanotechnology | Scientific Contribution Award

Professor of Amirkabir University of Technology, Iran

Prof. Cavus Falamaki, born in 1964 in Italy, is a distinguished chemical engineer and Full Professor at Amirkabir University of Technology (AUT), Tehran. He holds a Ph.D. in Chemical Engineering from AUT, with part of his doctoral work completed at ETH Zurich, focusing on zeolite crystallization. With over two decades of academic experience, he has served in key positions at AUT and the Materials and Energy Research Center (MERC). His research encompasses zeolite synthesis, catalytic processes, membrane technology, nano-materials, and environmental engineering, with expertise in both theoretical modeling and practical applications. He has led numerous industrial and academic projects in fields like water treatment, CO₂ conversion, and nanoparticle synthesis, often integrating green chemistry and sustainable technologies. Prof. Falamaki is multilingual and actively contributes to teaching, research, and innovation. His achievements have earned him national and international recognition, including awards from Iran’s Biotech Festival, the Cyber International Genius Inventor Fair in South Korea, and honors in nanotechnology research. He is widely published and recognized for bridging fundamental science with real-world engineering solutions. Through his academic leadership and multidisciplinary work, he remains a key contributor to advancements in chemical engineering, catalysis, and nanotechnology, with ongoing contributions to science and industry alike.

Professional Profile

Education

Prof. Cavus Falamaki earned a Ph.D. in Chemical Engineering from Amirkabir University of Technology in Tehran in 1997. His doctoral research focused on mathematical modeling and aspects of ZSM‑5 zeolite crystallization—an area crucial for catalysis and material science applications. During his Ph.D., he was selected for an exchange opportunity, spending one year (1995–1996) at ETH Zurich’s Zeolite Group within the Laboratory of Crystallography. This international exposure enriched his understanding of crystallographic methods and international research collaboration. During his tenure at ETH, he contributed to advanced studies on zeolite structure and synthesis. Upon returning to Tehran, he completed his Ph.D. and applied these insights in both academic and industrial settings. This educational trajectory blends rigorous theoretical training with practical, hands-on experience at a world-renowned institution, preparing him for a career spanning modeling, materials, and nanotechnologies.

Professional Experience

Prof. Falamaki’s academic trajectory spans from Assistant Professor in 1997 to Full Professor since 2016, reflecting over two decades of sustained contributions. Between 1997 and 2006, he served as Assistant Professor in the Ceramics Department at the Materials and Energy Research Center (MERC), Iran’s Ministry of Science, Research, and Technology. He was promoted to Associate Professor in 2006–2007 at MERC before transitioning to the Department of Chemical Engineering at AUT from 2007 onward. At AUT, he served as Associate Professor from 2007 until achieving Full Professor status in 2016. In these roles, he taught courses in crystallization theory, catalytic processes, zeolite synthesis, water treatment, nano‑materials, and membrane science at undergraduate and graduate levels. His earlier experiences at MERC also included managing ceramic processing and research teams and heading departments, which honed his leadership. He has successfully headed numerous research projects—spanning zeolite catalysts, membranes, water desalination, wastewater treatment, and CO₂ conversion—underscoring his integration of academia and industry. His progression highlights a balance of instructional expertise, laboratory leadership, and impactful applied research.

Research Interests

Prof. Falamaki’s research concentrates on catalyst development, membrane technology, nano-material synthesis, and environmental applications. His primary interests include mathematical and molecular modeling of crystallization processes, zeolite synthesis (especially ZSM‑5 and clinoptilolite), and catalytic systems for petrochemicals such as xylene isomerization and propane-SCR of NOx emissions. He also explores green synthesis routes—e.g., graphene oxide composites, gold nanoparticle production in microfluidic reactors—and catalysis for CO oxidation, methanol synthesis from CO₂, and selective separations like p-xylene molecular sieves. Another major thrust is advanced membranes: ceramic nano-filtration, sintered membrane reactors for oxidative coupling, and micro-supercapacitors, targeting water desalination or pollutant removal. His strong interest in sustainable and green chemical processes is exemplified through studies on bio-polymers for ion sequestration, water desalination via hydrates, and pollutant removal. Together, these highlight his cross-disciplinary approach—melding chemical engineering, materials science, nanotechnology, and environmental applications.

Research Skills

Prof. Falamaki possesses a rich suite of research skills spanning theoretical modeling, materials synthesis, catalysis, nano- and micro-fabrication, and analytical evaluation. He excels in mathematical and molecular modeling—particularly in crystallization kinetics and thermodynamics—and is adept with DFT simulations, molecular dynamics, and adsorption modeling. His lab expertise encompasses synthesizing zeolites, gold nanoparticles via microfluidic reactors, graphene composites, ceramic membranes, and nano-structured oxides. He has hands-on experience with pilot- and lab-scale reactor design, sintering methods, microwave-assisted processing, and membrane fabrication. Analytical skills include techniques like BET surface analysis, SPR sensors, resistive pulse sensing, electrode/electrochemical performance testing, and adsorption/desorption kinetics. Combined with his strength in green process development—like catalytic CO₂ hydrogenation, propane-SCR, and capacitive deionization—he demonstrates a comprehensive toolkit bridging theory to industrial application.

Awards and Honors

Prof. Falamaki’s contributions have been recognized by multiple awards at national and international levels. In 2013, he received recognition among the Top Three Products at Iran’s Biotech 2013 Festival, awarded by the Iranian Biotechnology Development Initiative under the Presidency. In 2011, he earned a Silver Award at the Cyber International Genius Inventor Fair in Seoul, South Korea, for an innovative invention. Earlier accolades include his selection as one of the Top Ten National Researchers in Nanotechnology by the Iranian Nanotechnology Initiative in 2007, and recognition as a Distinguished Researcher at MERC in 2006. These honors highlight his impact spanning biotechnology, invention, and nanotechnology, underscoring his innovative spirit and leadership in interdisciplinary science.

Conclusion

Prof. Cavus Falamaki is an accomplished academic whose career integrates advanced research, teaching, and leadership, anchored in his doctoral expertise in zeolite crystallization. His international exposure at ETH Zurich, extensive publication record, and decades of service at AUT and MERC reflect both depth and breadth. With a strong emphasis on catalysis, nano-materials, membranes, and environmental technologies, his work spans fundamental modeling to pilot-scale implementation. Recognized with several awards—including national honors in biotech and nanotechnology and global invention awards—his influence is both local and international. As a professor, researcher, and mentor, Prof. Falamaki embodies a commitment to innovation, sustainability, and interdisciplinary inquiry.

Publications Top Notes

  1. Title: Gold nanoparticles green production using diethyl carbonate as continuum phase in a dripping regime microfluidic reactor
    Year: 2025

  2. Title: Adsorption of asphaltene molecules on functionalized SiO₂ nanoparticles at atmospheric and high pressures in heptane/toluene environment: A molecular dynamics simulation study
    Year: 2024
    Citations: 2

  3. Title: Casein/starch composites: novel binders for green carbonaceous electrodes applied in the capacitive deionization of water
    Year: 2023
    Citations: 5

  4. Title: Mass transfer analysis of the isochoric–isotherm hydrate-based water desalination from CO₂/C₃H₈ gas mixtures
    Year: 2023

  5. Title: Nanoparticle Tracking Analysis: Enhanced Detection of Transparent Materials
    Year: 2023
    Citations: 3

  6. Title: Modified BET theory for actual surfaces: implementation of surface curvature
    Year: 2023
    Citations: 2

  7. Title: A comprehensive study of intravenous iron-carbohydrate nanomedicines: From synthesis methodology to physicochemical and pharmaceutical characterization
    Citations: 1

  8. Title: 3D Graphene for Capacitive De-ionization of Water
    Citations: 1

  9. Title: Applying a new approach to predict the residence time distribution in impinging streams reactors
    Year: 2023
    Citations: 3