Chongfeng Guo | Material Science | Best Researcher Award

Prof. Dr. Chongfeng Guo | Material Science | Best Researcher Award

Professor at Northwest University, China

Professor Chongfeng Guo is a distinguished researcher and academician in the field of rare earth luminescent materials, with a career spanning over two decades. Currently a full professor at Northwest University, China, Professor Guo has built a remarkable trajectory through academic excellence and interdisciplinary collaboration. His expertise lies at the intersection of nanoscience, biological science, and electrical engineering, where he explores the development and application of luminescent materials. He earned his Ph.D. from Sun Yat-Sen University and has since held several prominent academic positions including post-doctoral roles at Hong Kong University, associate professorship at Huazhong University of Science and Technology, and research professorship at Pukyong National University in Korea. He also served as a visiting professor at Macquarie University in Australia. With over 170 journal publications, 17 patents, and more than 11,000 citations, Professor Guo is recognized internationally for his groundbreaking contributions to material science and photonic applications. He actively collaborates with scientists from Poland, Russia, Belarus, Taiwan, and others to push the boundaries of research innovation. As a leader and member of numerous professional societies, his academic leadership continues to influence the fields of photonics, agricultural optics, and biomedical engineering significantly.

Professional Profile

Education

Professor Chongfeng Guo’s academic journey began with a solid foundation in materials science, culminating in the attainment of his Ph.D. from the prestigious Sun Yat-Sen University in China. His doctoral studies laid the groundwork for his expertise in rare earth luminescent materials, a field in which he would go on to make significant international contributions. Following the completion of his Ph.D., Professor Guo engaged in postdoctoral research at the University of Hong Kong, a phase marked by rich interdisciplinary collaborations and immersion in cutting-edge material research. His exposure to diverse scientific environments continued through various international appointments and research fellowships, providing him with a global perspective and multi-disciplinary insight. Throughout his education, Professor Guo demonstrated a deep commitment to academic rigor, creative experimentation, and practical application. His educational background has not only shaped his research philosophy but also equipped him to mentor the next generation of scientists. Today, his academic foundation supports his robust research in lighting, display technologies, agricultural applications, and bio-photonics, making him an exemplary figure in both Chinese and international scientific communities. His educational path reflects a balanced blend of theoretical depth and experimental mastery, which underpins his distinguished career as a scholar and innovator.

Professional Experience

Professor Chongfeng Guo’s professional experience is a testament to his global academic influence and multidisciplinary research leadership. He currently holds a full professorship at Northwest University, where he leads advanced research in inorganic luminescent materials. His professional journey began with a postdoctoral position at Hong Kong University, where he deepened his expertise in nanomaterials and photonics. He later became an associate professor at Huazhong University of Science and Technology, contributing significantly to material science curricula and research output. His academic influence extended to South Korea, where he was appointed as a research professor at Pukyong National University, and to Australia, where he served as a visiting professor at Macquarie University. In each role, Professor Guo has combined international exposure with a focus on practical applications of luminescent materials, particularly in agriculture, energy, and medicine. His leadership in over 15 completed and two ongoing research projects showcases his ability to lead large-scale, collaborative scientific endeavors. He also holds editorial responsibilities in several prestigious journals, such as The Journal of the American Ceramic Society and Chinese Journal of Luminescence. His wide-ranging professional experiences reflect not only technical excellence but also a strong commitment to global academic collaboration and innovation.

Research Interest

Professor Chongfeng Guo’s research interests revolve around the design, synthesis, and application of inorganic luminescent materials, particularly rare earth-based compounds. His work bridges fundamental science and practical innovation, with applications spanning lighting and display devices, agricultural photonics, biomedicine, and environmental technologies. A major thrust of his research focuses on the development of single-phased, multi-color-emitting phosphors that are critical for improving the efficiency and versatility of lighting systems. He is also a pioneer in agricultural optics, exploring how specific luminescent materials can enhance plant growth or deter pests based on their phototactic responses, thereby supporting sustainable agriculture. Furthermore, his research delves into the integration of phosphors in solar cells and photocatalysis for clean energy solutions. In biomedical fields, he applies nanophosphors in temperature and pressure sensing, biological imaging, tumor detection, and non-invasive phototherapy platforms. Importantly, Professor Guo employs a dual approach that combines first-principles theoretical calculations with experimental validation, allowing precise material design and structural tuning. His interdisciplinary approach aligns materials science with real-world challenges, setting a roadmap for innovations in smart agriculture, healthcare diagnostics, and energy devices. This diversified yet interconnected research interest has positioned him as a leading figure in modern luminescence and functional material applications.

Research Skills

Professor Chongfeng Guo brings to his field an exceptional array of research skills that encompass experimental synthesis, materials characterization, theoretical modeling, and translational science. He possesses deep expertise in designing and fabricating rare earth luminescent materials with tailored optical properties, especially for applications in lighting, display technologies, and biophotonics. His proficiency with advanced characterization tools such as photoluminescence spectroscopy, electron microscopy, and thermal analysis supports high-precision evaluation of material behavior under diverse conditions. A notable strength is his integration of theoretical simulations—specifically first-principles calculations—into the design process, enabling predictive control over material performance. Professor Guo’s skill in translating fundamental research into practical applications is evident in his 17 patents and over 170 publications, which reflect both innovation and academic rigor. He is adept at leading multidisciplinary teams and managing complex research projects, as demonstrated by his completion of 15 funded studies and ongoing leadership in two more. His international collaborations have further honed his project coordination, cross-cultural scientific communication, and mentorship capabilities. Additionally, his editorial roles in high-impact journals highlight his strong peer review, analytical, and editorial skills. Professor Guo’s research toolkit is comprehensive, making him a powerful force in advancing luminescent materials and their myriad applications.

Awards and Honors

Throughout his illustrious career, Professor Chongfeng Guo has been honored with multiple awards and recognitions that underscore his pioneering contributions to materials science and photonic technology. Although specific awards are not individually listed, his inclusion in prominent editorial boards and leadership roles within professional societies serves as testament to his academic stature. Notably, he serves as Associate Editor of The Journal of the American Ceramic Society and is actively involved with journals like Advanced Powder Materials and Chinese Journal of Luminescence. He holds influential positions such as Secretary-General of the Agricultural Optics Committee of the Chinese Optics Society, Director of the Chinese Society of Rare Earths, and Member of the Shaanxi Provincial Optics Society. These honors reflect the trust and respect he has earned from the scientific community. His remarkable citation index of 11,033, combined with his prolific research output, signals high impact and global relevance. His collaborative research across nations and participation in international joint projects also highlight his stature as a globally respected scholar. His nomination for the Best Researcher Award further exemplifies his sustained excellence, leadership, and significant research contributions in the global scientific ecosystem.

Conclusion

Professor Chongfeng Guo stands as an exemplary figure in the realm of materials science, merging scientific depth with practical innovation. His distinguished career, marked by global collaborations and cutting-edge research, reflects a relentless pursuit of excellence in rare earth luminescent materials and their diverse applications. From academic mentorship to experimental breakthroughs, he has significantly shaped interdisciplinary domains such as agricultural optics, bio-photonics, and energy harvesting technologies. His ability to bridge theory and practice, as seen in his combination of first-principles computation with experimental work, positions him as a leader in modern materials design. With more than 170 high-impact publications, 17 patents, and editorial responsibilities in prestigious journals, he continues to influence the scientific community on a global scale. His role as a director, editor, and collaborator with international institutions further amplifies his contributions beyond national borders. Professor Guo exemplifies the ideal of a scholar whose work not only advances knowledge but also fosters real-world change. As a nominee for the Best Researcher Award, he embodies innovation, leadership, and academic integrity, serving as a role model for future scientists committed to making meaningful contributions to society through science and technology.

Publications Top Notes

Title: Ab Initio Site Occupancy and Far-Red Emission of Mn⁴⁺ in Cubic-Phase La(MgTi)₁/₂O₃ for Plant Cultivation
Authors: Z. Zhou, J. Zheng, R. Shi, N. Zhang, J. Chen, R. Zhang, H. Suo, E.M. Goldys, …
Year: 2017
Citations: 343

 

Title: Rational Design of Ratiometric Luminescence Thermometry Based on Thermally Coupled Levels for Bioapplications
Authors: H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo
Year: 2021
Citations: 341


Title: Broad-Scope Thermometry Based on Dual-Color Modulation Up-Conversion Phosphor Ba₅Gd₈Zn₄O₂₁:Er³⁺/Yb³⁺
Authors: H. Suo, C. Guo, T. Li
Year: 2016
Citations: 284


Title: Site-Dependent Luminescence and Thermal Stability of Eu²⁺ Doped Fluorophosphate toward White LEDs for Plant Growth
Authors: J. Chen, N. Zhang, C. Guo, F. Pan, X. Zhou, H. Suo, X. Zhao, E.M. Goldys
Year: 2016
Citations: 254


Title: Thermometric and Optical Heating Bi-Functional Properties of Upconversion Phosphor Ba₅Gd₈Zn₄O₂₁:Yb³⁺/Tm³⁺
Authors: H. Suo, C. Guo, Z. Yang, S. Zhou, C. Duan, M. Yin
Year: 2015
Citations: 246


Title: Methods to Improve the Fluorescence Intensity of CaS:Eu²⁺ Red-Emitting Phosphor for White LED
Authors: C. Guo, D. Huang, Q. Su
Year: 2006
Citations: 236


Title: Ultra-Sensitive Optical Nano-Thermometer LaPO₄:Yb³⁺/Nd³⁺ Based on Thermo-Enhanced NIR-to-NIR Emissions
Authors: H. Suo, X. Zhao, Z. Zhang, C. Guo
Year: 2020
Citations: 235


Title: Three-Band White Light from InGaN-Based Blue LED Chip Precoated with Green/Red Phosphors
Authors: H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, Q. Su
Year: 2005
Citations: 221


Title: Sensitivity Modulation of Upconverting Thermometry Through Engineering Phonon Energy of a Matrix
Authors: H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, E.M. Goldys
Year: 2016
Citations: 217


Title: Enhancement of Red Emission and Site Analysis in Eu²⁺ Doped New-Type Structure Ba₃CaK(PO₄)₃ for Plant Growth White LEDs
Authors: J. Xiang, J. Zheng, Z. Zhou, H. Suo, X. Zhao, X. Zhou, N. Zhang, M.S. Molokeev, …
Year: 2019
Citations: 196

Juan de Pablo | Materials Science | Best Researcher Award

Prof. Juan de Pablo | Materials Science | Best Researcher Award

Professor and Vice President at New York University, United States

Dr. Juan José de Pablo is an internationally recognized leader in molecular engineering and materials science, currently serving as Professor and Vice President at New York University. With a distinguished academic and professional trajectory spanning over three decades, Dr. de Pablo has made pioneering contributions to soft matter physics, polymer engineering, and computational materials science. He has authored over 700 peer-reviewed publications and holds an H-index exceeding 120, reflecting the profound influence of his research. His recent roles include Executive Vice President for Global Science and Technology and Executive Dean of the Tandon School of Engineering at NYU, following a decade-long tenure at the University of Chicago. At the latter, he directed pivotal research centers and contributed to national laboratories like Argonne and Fermilab. A member of the U.S. National Academies of Engineering and Sciences, Dr. de Pablo’s interdisciplinary approach integrates theory, computation, and experimentation. His leadership in establishing large-scale scientific initiatives and educational outreach reflects a deep commitment to innovation, mentorship, and societal impact through science.

Professional Profile

Education

Dr. de Pablo began his academic journey with a Bachelor’s degree in Chemical Engineering from the National University of Mexico (UNAM) in 1985. He proceeded to earn a Ph.D. in Chemical Engineering from the University of California, Berkeley in 1990, a period during which he laid the foundation for his interest in polymeric systems and thermodynamics. Following this, he undertook a postdoctoral fellowship at ETH Zurich’s Institute for Polymers from 1990 to 1992, specializing in materials science. These formative years were instrumental in shaping his interdisciplinary research vision, blending rigorous theoretical training with practical insights. His educational background demonstrates a consistent trajectory toward advanced computational and molecular-level analysis of soft matter. The combination of leading North American and European institutions in his training reflects the global dimension of his perspective on science and engineering. These experiences equipped him with the skills to later lead international collaborations and scientific enterprises that bridge multiple disciplines, from nanotechnology to biophysics.

Professional Experience

Dr. de Pablo’s professional career is marked by leadership in academia, research management, and global scientific strategy. His early academic appointments were at the University of Wisconsin, where he progressed from Assistant to Full Professor of Chemical Engineering between 1992 and 2012. During this period, he also served as Director of the Materials Research Science and Engineering Center (MRSEC) and Deputy Director of the Nanoscale Science and Engineering Center (NSEC), driving frontier research in materials design and nanotechnology. In 2012, he joined the University of Chicago as the Liew Family Professor in the Institute for Molecular Engineering and Senior Scientist at Argonne National Laboratory. He later held multiple vice-presidential roles, overseeing national laboratories and leading global science initiatives. Currently, as Executive Vice President for Global Science and Technology and Executive Dean of NYU’s Tandon School of Engineering, he continues to shape science policy, innovation ecosystems, and advanced education. His leadership roles at UChicago-Argonne LLC and the Center for Hierarchical Materials Design (CHiMaD) further underscore his expertise in strategic research development and interdisciplinary collaboration.

Research Interest

Dr. de Pablo’s research interests span a broad spectrum within molecular and materials engineering, including soft condensed matter, computational thermodynamics, polymer physics, and biomolecular simulations. He has been instrumental in developing novel simulation techniques that enable a molecular-level understanding of materials behavior under complex conditions. His work frequently integrates theoretical frameworks with experimental data, enabling predictive modeling of systems ranging from liquid crystals to nucleic acids. More recently, he has expanded into machine learning-guided materials discovery and the design of functional materials for health, sustainability, and electronics. He is also deeply engaged in the Materials Genome Initiative, contributing to the national agenda for accelerating materials innovation. Dr. de Pablo’s research not only advances fundamental science but also facilitates translational outcomes, such as in the stabilization of biologics, nanofabrication, and soft robotics. His interdisciplinary and collaborative approach has positioned him at the forefront of modern materials science, with sustained funding from national agencies and partnerships with industry.

Research Skills

Dr. de Pablo’s research skills are characterized by exceptional breadth and depth in theoretical, computational, and applied materials science. He has pioneered algorithms for calculating free energies, explored phase transitions in complex fluids, and designed coarse-grained models for large biomolecules. His fluency in molecular dynamics, Monte Carlo simulations, and density-of-states methods is complemented by expertise in high-performance computing and GPU acceleration. He applies these tools to problems in polymer behavior, nanostructured materials, and biointerfaces. Dr. de Pablo also has deep knowledge of lithography, directed self-assembly, and patterning technologies, as evidenced by his multiple U.S. patents in these areas. Moreover, he plays a leading role in training the next generation of scientists, having supervised over 70 Ph.D. students. His entrepreneurial activities and editorial roles reflect a commitment to disseminating innovation and shaping the scientific discourse. These research capabilities, coupled with leadership in large-scale initiatives and advisory committees, make Dr. de Pablo a uniquely effective figure in both advancing science and mentoring talent.

Awards and Honors

Dr. de Pablo’s illustrious career has been recognized with over 60 prestigious awards, fellowships, and honors, reflecting his outstanding contributions to science, education, and leadership. Early in his career, he received multiple young investigator awards from the NSF, IBM, Xerox, and 3M. Notably, he was honored with the Presidential Early Career Award in Science and Engineering (PECASE) and the Presidential Faculty Fellow Award by President Clinton. He has since delivered over 40 named lectures, including the Paul Flory, Marie Curie, and Samuel C. Johnson Distinguished Lectures. Dr. de Pablo is an elected Fellow of the American Physical Society, American Academy of Arts and Sciences, and a Member of both the National Academy of Engineering and National Academy of Sciences. His recent recognitions include the Polymer Physics Prize, DuPont Medal for Excellence, and international accolades such as the Chevalier de l’Ordre du Mérite (France). These honors highlight not only his scientific excellence but also his impact as an educator, innovator, and global science diplomat.

Conclusion

Dr. Juan José de Pablo’s career exemplifies the integration of scientific brilliance, visionary leadership, and a deep commitment to global collaboration and mentorship. From his foundational training in Mexico and the U.S. to his leadership at premier institutions like the University of Chicago and NYU, he has continuously advanced the frontiers of molecular engineering and materials science. His interdisciplinary research, extensive publication record, and innovative patent portfolio showcase both depth and translational relevance. Beyond his technical achievements, Dr. de Pablo’s influence on science policy, education, and diversity initiatives reflects a holistic vision for the role of science in society. As an advisor, editor, and entrepreneur, he fosters environments where cutting-edge research meets real-world challenges. His legacy is further amplified through the numerous students and researchers he has mentored, many of whom have become leaders in their own right. Dr. de Pablo remains an inspirational figure whose work bridges disciplines, institutions, and continents in the pursuit of scientific progress and societal advancement.

Publications Top Notes

Title: Water-mediated ion transport in an anion exchange membrane
Authors: Juan J De Pablo
Year: 2025
Citations: 2

Title: Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering
Authors: Juan J De Pablo
Year: 2025
Citations: 1

Title: Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
Authors: Juan J De Pablo
Year: 2025

Title: Synthetic Active Liquid Crystals Powered by Acoustic Waves
Authors: Juan J De Pablo
Year: 2025

Title: Current Advances in Genome Modeling Across Length Scales
Authors: Juan J De Pablo
Year: 2025

Title: Chromatin structures from integrated AI and polymer physics model
Authors: Juan J De Pablo
Year: 2025
Citations: 1

Title: A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions
Authors: Juan J De Pablo
Year: 2025

Title: Bio-Based Surfactants via Borrowing Hydrogen Catalysis
Authors: Juan J De Pablo
Year: 2025

Title: Efficient sampling of free energy landscapes with functions in Sobolev spaces
Authors: Juan J De Pablo
Year: 2025
Citations: 1

Title: 3D Nano-architected Polymer Shell Enables Reconfigurable Stabilized Blue Phase Soft Crystals
Authors: Juan J De Pablo
Year: 2025