Mengqiang Li | Material Science | Best Applied Science Award

Mr. Mengqiang Li | Material Science | Best Applied Science Award

Mengqiang Li from Chungnam National University | South Korea

Li Meng Qiang is a dedicated researcher currently pursuing a Ph.D. at Chungnam National University, specializing in the development of advanced organic optoelectronic materials and perovskite solar cells. His work bridges fundamental material design with practical device applications, aiming to enhance efficiency, stability, and commercialization potential in next-generation photovoltaic and optoelectronic devices. Over the course of his academic journey, Li has demonstrated exceptional productivity, contributing to more than 12 SCI-indexed publications in highly regarded journals such as Advanced Functional Materials, Advanced Science, Materials Today Energy, and ACS Energy Letters. His research interests extend into π-conjugated molecular design, organic photodetectors, and interface engineering strategies that optimize device performance. With an h-index of 5, total citations of 57, and multiple collaborative projects involving leading institutions in Korea and China, Li has established himself as a promising scientist in his field. His contributions include the development of ionic liquid additives, nonfullerene acceptors, and novel quinone-terminal organic semiconductors, which have been recognized with honors such as the BK21 Outstanding Researcher Award and the Korean Industrialization Society Outstanding Presentation Award. Li’s research is fueled by a strong commitment to innovation, scientific rigor, and the translation of laboratory breakthroughs into viable industrial solutions.

Professional Profile

Scopus | ORCID | Google Scholar

Education

Li Meng Qiang’s academic path reflects a deep commitment to materials science and device engineering. He is currently enrolled in the Ph.D. program at Chungnam National University, Republic of Korea, where his research focuses on organic optoelectronic materials and perovskite solar cells. This doctoral training has provided him with advanced expertise in molecular design, synthesis, thin-film fabrication, and device characterization. His work integrates both experimental and theoretical approaches, ensuring a well-rounded understanding of how material properties translate into device performance. Prior to his doctoral studies, Li acquired a strong foundation in chemistry, materials science, and electronic engineering through rigorous undergraduate and postgraduate coursework, where he developed early interests in π-conjugated systems and their optoelectronic applications. His educational experience has been enriched by collaborations with interdisciplinary research teams, which have exposed him to global research standards and cross-cultural scientific exchange. Through seminars, workshops, and international conferences, Li has continuously expanded his academic horizons, keeping pace with the rapidly evolving landscape of organic electronics. His education not only equipped him with technical knowledge but also fostered a mindset oriented toward problem-solving, innovation, and the practical application of scientific discoveries.

Professional Experience

Although currently engaged in full-time doctoral research, Li Meng Qiang has accumulated valuable professional experience through his active involvement in high-impact research projects and collaborations. At Chungnam National University, he has led and contributed to multiple funded projects focusing on the synthesis and application of organic semiconductors, interface engineering for perovskite solar cells, and the development of near-infrared organic photodetectors. His work is characterized by a hands-on approach, from material synthesis to device fabrication and performance optimization. Li’s professional contributions extend beyond laboratory work; he has authored and co-authored over 12 SCI-indexed journal articles, often serving as a key contributor in experimental design, data analysis, and manuscript preparation. His international collaborations with research groups in Korea and China have further broadened his professional scope, allowing him to work on projects that combine material innovation with scalable manufacturing processes. Li has also been actively involved in presenting his research at international conferences, where he has earned recognition for his clarity in communication and the novelty of his findings. Through these experiences, he has developed a professional identity as a skilled experimentalist, an effective communicator, and a collaborative team member dedicated to advancing optoelectronic technologies.

Research Interest

Li Meng Qiang’s research interests lie at the intersection of materials chemistry, nanotechnology, and device engineering, with a particular focus on organic optoelectronic materials and perovskite solar cells. His scientific curiosity is driven by the need to improve the efficiency, stability, and scalability of next-generation energy conversion devices. Central to his work is the design and synthesis of π-conjugated molecules, nonfullerene acceptors, and novel electron acceptors with unique quinone-terminal groups for enhanced optoelectronic performance. Li is also deeply engaged in exploring ionic liquid additives and surface passivation strategies to mitigate defects, suppress nonradiative recombination, and enhance device operational stability. His research extends into organic photodetectors, especially those capable of near-infrared detection, which hold significant promise for applications in sensing, imaging, and communication. By combining molecular engineering with advanced device architecture, Li seeks to develop materials that can be seamlessly integrated into high-performance, cost-effective, and environmentally sustainable electronic systems. His long-term vision is to bridge the gap between laboratory-scale innovations and industrial-scale applications, enabling the commercialization of high-efficiency solar cells and multifunctional optoelectronic devices that contribute to global clean energy solutions.

Research Skills

Li Meng Qiang possesses a diverse set of research skills spanning molecular design, material synthesis, device fabrication, and performance characterization. In synthetic chemistry, he is proficient in designing and producing π-conjugated molecules, nonfullerene acceptors, and organic semiconductors with targeted optoelectronic properties. His expertise in thin-film deposition techniques, such as spin-coating and vacuum evaporation, enables him to fabricate high-quality active layers for perovskite and organic solar cells. He is adept at employing interface engineering methods, including surface passivation and additive incorporation, to optimize device efficiency and stability. Li is also skilled in the characterization of materials and devices using UV-vis spectroscopy, photoluminescence spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and current-voltage (J-V) measurements. His analytical skills allow him to interpret complex datasets and derive meaningful correlations between molecular structure, film morphology, and device performance. Additionally, Li has experience with collaborative research management, manuscript preparation, and peer-reviewed publishing. His strong presentation skills, honed through international conferences, enable him to effectively communicate technical concepts to diverse audiences. Overall, his research toolkit is both comprehensive and adaptable, supporting his goal of advancing the frontiers of organic optoelectronic materials and device engineering.

Awards and Honors

Li Meng Qiang’s research excellence has been recognized through several prestigious awards and honors, reflecting both the quality and impact of his scientific contributions. Among his notable accolades is the BK21 Outstanding Researcher Award, which honors outstanding achievements in graduate-level research and innovation. This award underscores his commitment to advancing knowledge in organic optoelectronics and his ability to deliver high-quality, impactful scientific work. He also received the Korean Industrialization Society Outstanding Presentation Award, acknowledging his skill in effectively communicating complex research findings and their industrial relevance. These honors are complemented by his strong publication record in leading journals such as Advanced Functional Materials and ACS Energy Letters. Beyond formal awards, his work has garnered attention through invitations to present at international conferences and participate in collaborative projects with top research groups in Korea and China. His recognition is not only a testament to his technical expertise but also to his dedication, perseverance, and ability to translate research into meaningful technological advancements. These achievements highlight his potential as a future leader in the field of optoelectronic materials and sustainable energy technologies.

Publications Top Notes

Title: Passivating detrimental grain boundaries in perovskite films with strongly interacting polymer for achieving high-efficiency and stable perovskite solar cells
Year: 2023
Citations: 25

Title: Recent progress in semitransparent organic solar cells: photoabsorbent materials and design strategies
Year: 2024
Citations: 10

Title: Enhanced chemical interaction between ionic liquid and halide perovskite to improve performance of perovskite solar cells
Year: 2024
Citations: 7

Title: Interlayer molecular doping to enhance efficiency in tin perovskite solar cells
Year: 2024
Citations: 5

Title: Critical role of the end-group acceptor in enhancing the efficiency of indacenodithiophene-benzothiadiazole-linked nonfullerene organic solar cells through morphology optimization
Year: 2024
Citations: 5

Conclusion

In summary, Li Meng Qiang is an emerging scientist whose work in organic optoelectronic materials and perovskite solar cells stands at the forefront of clean energy research. Through rigorous doctoral training at Chungnam National University, he has developed expertise that spans the entire spectrum from molecular design to device fabrication and performance optimization. His scientific output—comprising more than 12 SCI-indexed publications, an h-index of 5, and over 57 citations—reflects a consistent commitment to quality, innovation, and impact. His contributions to π-bridge engineering, ionic liquid additives, and novel electron acceptors have significantly advanced the understanding and performance of optoelectronic devices. Honors such as the BK21 Outstanding Researcher Award further validate his potential and achievements. Looking forward, Li aims to continue bridging academic research with industrial applications, focusing on scalable, high-performance, and environmentally sustainable solutions. With a foundation built on technical excellence, collaborative engagement, and a forward-looking research vision, he is poised to make substantial contributions to global energy challenges and the future of optoelectronic technology.

Zheng Liu | Material Science | Best Researcher Award

Dr. Zheng Liu | Material Science | Best Researcher Award

Researcher at Taihang Laboratory | China

Dr. Zheng Liu is an accomplished materials scientist and engineer whose expertise spans polymer chemistry, physics, and advanced composite materials for aerospace applications. As an associate researcher at the Lightweight Structure and Materials Manufacturing Research Center, jointly affiliated with Taihang Laboratory and Northwestern Polytechnical University, he has made significant contributions to the development, optimization, and mechanistic understanding of polymer- and ceramic-based composite materials. His research focuses on structural/functional integrated composites, wave-transparent and wave-absorbing composites, ceramic matrix composites, and thermal conductive composites, with applications in aviation flight vehicles and power systems. Dr. Liu’s work has led to notable advancements implemented in pre-research aircraft and propulsion systems. He has authored over 20 high-impact journal publications, including multiple ESI Hot Papers and Highly Cited Papers, and holds 10 national invention patents. His scholarly influence is further reflected in his authorship of a monograph with Springer Nature, contributions to Wiley and Intech publications, and service as a guest editor and peer reviewer for prestigious journals. Recognized as a national-level young talent and recipient of multiple awards, Dr. Liu combines academic excellence with industrial application, bridging fundamental materials research with real-world engineering solutions.

Professional Profile

Scopus | ORCID

Education

Dr. Zheng Liu’s academic foundation reflects a continuous and focused progression toward expertise in advanced composite materials and their engineering applications. He began his undergraduate studies at Nanchang Hangkong University, earning a bachelor’s degree in materials science with a strong emphasis on polymer chemistry and structural materials. Building on this, he pursued a master’s degree at Northwestern Polytechnical University, where he deepened his research into polymer-based composites and interface modification strategies, gaining hands-on experience with laboratory synthesis and performance testing. His master’s research provided the groundwork for his doctoral studies, also at Northwestern Polytechnical University, where he conducted extensive research on structural/functional integrated composites, particularly focusing on wave-transparent and thermal-conductive materials for aerospace applications. Throughout his academic journey, Dr. Liu actively engaged in national and provincial research projects, honing his skills in both experimental techniques and theoretical modeling. His education not only equipped him with solid scientific knowledge but also cultivated his ability to translate complex material designs into practical engineering applications. This strong academic progression laid the foundation for his current role as a leading engineer and researcher in high-performance composite materials for advanced aerospace systems.

Professional Experience

Dr. Zheng Liu currently serves as an engineer at the Taihang Laboratory, working closely with the Lightweight Structure and Materials Manufacturing Research Center in collaboration with Northwestern Polytechnical University. In this role, he applies his deep expertise in polymer and ceramic matrix composites to develop advanced structural and functional materials for aerospace applications. His work focuses on optimizing composite architectures, improving interface bonding, and enhancing performance parameters such as thermal conductivity, dielectric properties, and wave transparency. Dr. Liu plays a critical role in integrating research innovations into practical engineering solutions, particularly for aviation flight vehicles and power systems. His contributions have been successfully implemented in pre-research aircraft projects, demonstrating both technological and industrial impact. In addition to his engineering responsibilities, Dr. Liu serves as an industry mentor for engineering master’s degree students, guiding the next generation of researchers. He has also been actively involved in national and provincial-level research initiatives, collaborating with multidisciplinary teams on high-profile projects supported by organizations such as the National Natural Science Foundation of China. His dual role as a researcher and engineer ensures that his work maintains a balance between cutting-edge science and functional application.

Research Interest

Dr. Zheng Liu’s research interests lie at the intersection of polymer science, composite engineering, and aerospace material innovation. He specializes in the design, fabrication, and performance optimization of polymer-based and ceramic-based composites for high-performance structural and functional applications. His work encompasses structural/functional integrated composites, wave-transparent composites, wave-absorbing materials, and thermal conductive composites, all tailored for demanding operational environments. A key focus of his research is the modification of composite interfaces, aimed at improving mechanical strength, thermal stability, and electromagnetic properties. Dr. Liu is particularly interested in uncovering the intrinsic mechanisms governing composite material behaviors, enabling precise optimization for aerospace and defense systems. He integrates experimental studies with theoretical modeling to establish structure–property relationships, ensuring material designs meet both functional and structural demands. Additionally, he explores novel fabrication and processing methods, such as polymer modification and hybrid reinforcement strategies, to achieve multi-functional integration. His research aligns with national priorities in aerospace innovation, with outcomes directly applied to aviation flight vehicles and propulsion systems. Ultimately, Dr. Liu aims to advance next-generation lightweight, high-strength, and multi-functional composite materials that push the boundaries of aerospace engineering and materials science.

Research Skills

Dr. Zheng Liu possesses a broad and specialized skill set that supports his work in advanced composite materials research and development. His materials synthesis and processing expertise includes polymer modification, ceramic matrix fabrication, fiber surface functionalization, and hybrid composite assembly. He is proficient in interface engineering techniques, employing advanced compatibilizers, polymer grafting, and surface coatings to enhance composite bonding and performance. Dr. Liu is skilled in materials characterization methods such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. His mechanical property evaluation capabilities include tensile, flexural, impact, and interlaminar shear testing, as well as thermal and dielectric property assessments. He has significant experience in wave-transparency and electromagnetic testing, critical for aerospace applications. Beyond experimental skills, Dr. Liu is adept in scientific writing and publishing, having authored numerous high-impact papers and book chapters. He is also experienced in project leadership, managing interdisciplinary teams and overseeing multiple national and provincial research initiatives. His combination of hands-on laboratory expertise, analytical skills, and engineering insight enables him to translate cutting-edge research into practical, industry-ready composite materials solutions.

Awards and Honors

Dr. Zheng Liu has been widely recognized for his scientific excellence, innovation, and impactful contributions to advanced composite materials research. He has been selected for national-level and provincial-level talent programs, including the China Association for Science and Technology Young Talent Support Program, underscoring his status as an emerging leader in materials science. His achievements have earned multiple prestigious honors, such as the Wiley China High Contribution Author Award, the COS Award in Materials Science for Best Researcher, the First Prize in the Cross-Strait Youth Composite Materials Innovation and Entrepreneurship Competition, and the Excellent Paper Award from the Chinese Society of Composite Materials. Dr. Liu’s research impact is reflected in his role as first or corresponding author on over 20 high-impact journal publications, including multiple ESI Hot Papers and Highly Cited Papers, with several exceeding 100 citations. His intellectual property portfolio includes 10 national invention patents, and his academic influence extends through his authorship of a Springer Nature monograph, a co-authored Wiley monograph, and multiple book chapters. These awards and honors highlight his dedication to advancing aerospace material technologies and his contributions to bridging academic research with engineering applications.

Publications Top Notes

Title: A review on optimal preparation of multi-component fillers and fibers with excellent wideband microwave absorbing performance through the electromagnetic loss engineering
Year: 2025

Title: Optimal Preparation and Inherent Mechanism of Advanced Integrated Structural/Electromagnetic Wave-Absorbing Polymer-Based Composites for Aeronautical Applications: A Review
Year: 2025

Title: Interfacial strengthening and processing of carbon fibers reinforced poly(ether-ether-ketone) composites: A mini-review
Year: 2024

Title: A mini-review of ultra-low dielectric constant intrinsic epoxy resins: Mechanism, preparation and application
Year: 2024

Title: Block copolymer functionalized quartz fibers/cyanate ester wave-transparent laminated composites
Year: 2023

Conclusion

Dr. Zheng Liu represents a new generation of materials scientists whose work bridges fundamental research and practical engineering in aerospace composite materials. With a solid academic foundation, extensive research experience, and a proven track record of translating innovations into industrial applications, he exemplifies the integration of science and technology. His contributions to polymer-based and ceramic-based composite optimization have already been implemented in pre-research aircraft and propulsion systems, showcasing the real-world value of his research. As a national-level young talent and award-winning author, Dr. Liu continues to influence the field through his publications, patents, and editorial work. His mentorship of graduate students and active participation in collaborative research projects further extend his impact within the scientific community. Driven by a commitment to advancing lightweight, high-strength, and multi-functional materials, Dr. Liu is poised to contribute significantly to the future of aerospace engineering and high-performance composites. His career reflects both academic rigor and industrial relevance, making him a leading figure in the evolving landscape of advanced materials science.

Chongfeng Guo | Material Science | Best Researcher Award

Prof. Dr. Chongfeng Guo | Material Science | Best Researcher Award

Professor at Northwest University, China

Professor Chongfeng Guo is a distinguished researcher and academician in the field of rare earth luminescent materials, with a career spanning over two decades. Currently a full professor at Northwest University, China, Professor Guo has built a remarkable trajectory through academic excellence and interdisciplinary collaboration. His expertise lies at the intersection of nanoscience, biological science, and electrical engineering, where he explores the development and application of luminescent materials. He earned his Ph.D. from Sun Yat-Sen University and has since held several prominent academic positions including post-doctoral roles at Hong Kong University, associate professorship at Huazhong University of Science and Technology, and research professorship at Pukyong National University in Korea. He also served as a visiting professor at Macquarie University in Australia. With over 170 journal publications, 17 patents, and more than 11,000 citations, Professor Guo is recognized internationally for his groundbreaking contributions to material science and photonic applications. He actively collaborates with scientists from Poland, Russia, Belarus, Taiwan, and others to push the boundaries of research innovation. As a leader and member of numerous professional societies, his academic leadership continues to influence the fields of photonics, agricultural optics, and biomedical engineering significantly.

Professional Profile

Education

Professor Chongfeng Guo’s academic journey began with a solid foundation in materials science, culminating in the attainment of his Ph.D. from the prestigious Sun Yat-Sen University in China. His doctoral studies laid the groundwork for his expertise in rare earth luminescent materials, a field in which he would go on to make significant international contributions. Following the completion of his Ph.D., Professor Guo engaged in postdoctoral research at the University of Hong Kong, a phase marked by rich interdisciplinary collaborations and immersion in cutting-edge material research. His exposure to diverse scientific environments continued through various international appointments and research fellowships, providing him with a global perspective and multi-disciplinary insight. Throughout his education, Professor Guo demonstrated a deep commitment to academic rigor, creative experimentation, and practical application. His educational background has not only shaped his research philosophy but also equipped him to mentor the next generation of scientists. Today, his academic foundation supports his robust research in lighting, display technologies, agricultural applications, and bio-photonics, making him an exemplary figure in both Chinese and international scientific communities. His educational path reflects a balanced blend of theoretical depth and experimental mastery, which underpins his distinguished career as a scholar and innovator.

Professional Experience

Professor Chongfeng Guo’s professional experience is a testament to his global academic influence and multidisciplinary research leadership. He currently holds a full professorship at Northwest University, where he leads advanced research in inorganic luminescent materials. His professional journey began with a postdoctoral position at Hong Kong University, where he deepened his expertise in nanomaterials and photonics. He later became an associate professor at Huazhong University of Science and Technology, contributing significantly to material science curricula and research output. His academic influence extended to South Korea, where he was appointed as a research professor at Pukyong National University, and to Australia, where he served as a visiting professor at Macquarie University. In each role, Professor Guo has combined international exposure with a focus on practical applications of luminescent materials, particularly in agriculture, energy, and medicine. His leadership in over 15 completed and two ongoing research projects showcases his ability to lead large-scale, collaborative scientific endeavors. He also holds editorial responsibilities in several prestigious journals, such as The Journal of the American Ceramic Society and Chinese Journal of Luminescence. His wide-ranging professional experiences reflect not only technical excellence but also a strong commitment to global academic collaboration and innovation.

Research Interest

Professor Chongfeng Guo’s research interests revolve around the design, synthesis, and application of inorganic luminescent materials, particularly rare earth-based compounds. His work bridges fundamental science and practical innovation, with applications spanning lighting and display devices, agricultural photonics, biomedicine, and environmental technologies. A major thrust of his research focuses on the development of single-phased, multi-color-emitting phosphors that are critical for improving the efficiency and versatility of lighting systems. He is also a pioneer in agricultural optics, exploring how specific luminescent materials can enhance plant growth or deter pests based on their phototactic responses, thereby supporting sustainable agriculture. Furthermore, his research delves into the integration of phosphors in solar cells and photocatalysis for clean energy solutions. In biomedical fields, he applies nanophosphors in temperature and pressure sensing, biological imaging, tumor detection, and non-invasive phototherapy platforms. Importantly, Professor Guo employs a dual approach that combines first-principles theoretical calculations with experimental validation, allowing precise material design and structural tuning. His interdisciplinary approach aligns materials science with real-world challenges, setting a roadmap for innovations in smart agriculture, healthcare diagnostics, and energy devices. This diversified yet interconnected research interest has positioned him as a leading figure in modern luminescence and functional material applications.

Research Skills

Professor Chongfeng Guo brings to his field an exceptional array of research skills that encompass experimental synthesis, materials characterization, theoretical modeling, and translational science. He possesses deep expertise in designing and fabricating rare earth luminescent materials with tailored optical properties, especially for applications in lighting, display technologies, and biophotonics. His proficiency with advanced characterization tools such as photoluminescence spectroscopy, electron microscopy, and thermal analysis supports high-precision evaluation of material behavior under diverse conditions. A notable strength is his integration of theoretical simulations—specifically first-principles calculations—into the design process, enabling predictive control over material performance. Professor Guo’s skill in translating fundamental research into practical applications is evident in his 17 patents and over 170 publications, which reflect both innovation and academic rigor. He is adept at leading multidisciplinary teams and managing complex research projects, as demonstrated by his completion of 15 funded studies and ongoing leadership in two more. His international collaborations have further honed his project coordination, cross-cultural scientific communication, and mentorship capabilities. Additionally, his editorial roles in high-impact journals highlight his strong peer review, analytical, and editorial skills. Professor Guo’s research toolkit is comprehensive, making him a powerful force in advancing luminescent materials and their myriad applications.

Awards and Honors

Throughout his illustrious career, Professor Chongfeng Guo has been honored with multiple awards and recognitions that underscore his pioneering contributions to materials science and photonic technology. Although specific awards are not individually listed, his inclusion in prominent editorial boards and leadership roles within professional societies serves as testament to his academic stature. Notably, he serves as Associate Editor of The Journal of the American Ceramic Society and is actively involved with journals like Advanced Powder Materials and Chinese Journal of Luminescence. He holds influential positions such as Secretary-General of the Agricultural Optics Committee of the Chinese Optics Society, Director of the Chinese Society of Rare Earths, and Member of the Shaanxi Provincial Optics Society. These honors reflect the trust and respect he has earned from the scientific community. His remarkable citation index of 11,033, combined with his prolific research output, signals high impact and global relevance. His collaborative research across nations and participation in international joint projects also highlight his stature as a globally respected scholar. His nomination for the Best Researcher Award further exemplifies his sustained excellence, leadership, and significant research contributions in the global scientific ecosystem.

Conclusion

Professor Chongfeng Guo stands as an exemplary figure in the realm of materials science, merging scientific depth with practical innovation. His distinguished career, marked by global collaborations and cutting-edge research, reflects a relentless pursuit of excellence in rare earth luminescent materials and their diverse applications. From academic mentorship to experimental breakthroughs, he has significantly shaped interdisciplinary domains such as agricultural optics, bio-photonics, and energy harvesting technologies. His ability to bridge theory and practice, as seen in his combination of first-principles computation with experimental work, positions him as a leader in modern materials design. With more than 170 high-impact publications, 17 patents, and editorial responsibilities in prestigious journals, he continues to influence the scientific community on a global scale. His role as a director, editor, and collaborator with international institutions further amplifies his contributions beyond national borders. Professor Guo exemplifies the ideal of a scholar whose work not only advances knowledge but also fosters real-world change. As a nominee for the Best Researcher Award, he embodies innovation, leadership, and academic integrity, serving as a role model for future scientists committed to making meaningful contributions to society through science and technology.

Publications Top Notes

Title: Ab Initio Site Occupancy and Far-Red Emission of Mn⁴⁺ in Cubic-Phase La(MgTi)₁/₂O₃ for Plant Cultivation
Authors: Z. Zhou, J. Zheng, R. Shi, N. Zhang, J. Chen, R. Zhang, H. Suo, E.M. Goldys, …
Year: 2017
Citations: 343

 

Title: Rational Design of Ratiometric Luminescence Thermometry Based on Thermally Coupled Levels for Bioapplications
Authors: H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo
Year: 2021
Citations: 341


Title: Broad-Scope Thermometry Based on Dual-Color Modulation Up-Conversion Phosphor Ba₅Gd₈Zn₄O₂₁:Er³⁺/Yb³⁺
Authors: H. Suo, C. Guo, T. Li
Year: 2016
Citations: 284


Title: Site-Dependent Luminescence and Thermal Stability of Eu²⁺ Doped Fluorophosphate toward White LEDs for Plant Growth
Authors: J. Chen, N. Zhang, C. Guo, F. Pan, X. Zhou, H. Suo, X. Zhao, E.M. Goldys
Year: 2016
Citations: 254


Title: Thermometric and Optical Heating Bi-Functional Properties of Upconversion Phosphor Ba₅Gd₈Zn₄O₂₁:Yb³⁺/Tm³⁺
Authors: H. Suo, C. Guo, Z. Yang, S. Zhou, C. Duan, M. Yin
Year: 2015
Citations: 246


Title: Methods to Improve the Fluorescence Intensity of CaS:Eu²⁺ Red-Emitting Phosphor for White LED
Authors: C. Guo, D. Huang, Q. Su
Year: 2006
Citations: 236


Title: Ultra-Sensitive Optical Nano-Thermometer LaPO₄:Yb³⁺/Nd³⁺ Based on Thermo-Enhanced NIR-to-NIR Emissions
Authors: H. Suo, X. Zhao, Z. Zhang, C. Guo
Year: 2020
Citations: 235


Title: Three-Band White Light from InGaN-Based Blue LED Chip Precoated with Green/Red Phosphors
Authors: H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, Q. Su
Year: 2005
Citations: 221


Title: Sensitivity Modulation of Upconverting Thermometry Through Engineering Phonon Energy of a Matrix
Authors: H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, E.M. Goldys
Year: 2016
Citations: 217


Title: Enhancement of Red Emission and Site Analysis in Eu²⁺ Doped New-Type Structure Ba₃CaK(PO₄)₃ for Plant Growth White LEDs
Authors: J. Xiang, J. Zheng, Z. Zhou, H. Suo, X. Zhao, X. Zhou, N. Zhang, M.S. Molokeev, …
Year: 2019
Citations: 196

Eduardo Bittencourt | Material Science | Best Researcher Award

Prof. Dr. Eduardo Bittencourt | Material Science | Best Researcher Award

Professor at Federal University of Rio Grande do Sul, Brazil

Prof. Eduardo Bittencourt is a distinguished academic and researcher with extensive contributions in mechanical, metallurgical, and civil engineering. Holding a Bachelor’s degree in Mechanical Engineering, a Master of Science in Metallurgy, and a Ph.D. in Civil Engineering, he exemplifies interdisciplinary expertise. He further enhanced his academic experience through a postdoctoral fellowship at Brown University, USA. Currently a Full Professor at the Federal University of Rio Grande do Sul (UFRGS) in Porto Alegre, Brazil—one of South America’s top-ranked universities—Prof. Bittencourt is renowned for his teaching and research in structural mechanics and material science. He lectures on structural mechanics for undergraduate students and advanced topics like plasticity and fracture for graduate students. His research is centered on computational mechanics, specifically isotropic and crystal plasticity, as well as the fracture behavior of metallic and quasi-fragile materials. With a record of mentoring over 30 M.Sc., Ph.D. students, and post-doctoral researchers, he has cultivated academic excellence across multiple levels. Prof. Bittencourt has published more than 30 peer-reviewed articles, accumulating around 800 citations. In addition to being a respected reviewer for high-impact journals, he maintains active involvement in shaping scientific standards in his fields of expertise. His career is marked by deep commitment to innovation, education, and scholarly excellence.

Professional Profile

Education

Prof. Eduardo Bittencourt has pursued a robust and interdisciplinary academic path that underscores his expertise in engineering and material science. He began his educational journey with a Bachelor’s degree in Mechanical Engineering, establishing a solid foundation in mechanical systems, materials, and applied mechanics. Driven by a keen interest in materials behavior, he pursued a Master of Science in Metallurgy, where he focused on the structural and mechanical properties of metals and alloys. His thesis work during this time helped bridge the gap between mechanical engineering applications and materials performance. Building upon this foundation, Prof. Bittencourt earned a Ph.D. in Civil Engineering, where he explored advanced topics such as structural analysis, fracture mechanics, and material durability in civil infrastructures. His doctoral research enabled a deeper understanding of how engineering structures behave under stress and how materials degrade over time. Further enriching his academic profile, he undertook postdoctoral research at Brown University in the United States, a globally recognized institution known for pioneering work in materials and computational mechanics. This postdoctoral tenure allowed him to collaborate with international experts and explore emerging areas in fracture and plasticity. Prof. Bittencourt’s academic trajectory reflects a continuous pursuit of interdisciplinary knowledge and a commitment to research excellence.

Professional Experience

Prof. Eduardo Bittencourt’s professional experience is defined by decades of impactful academic and research contributions. He currently serves as a Full Professor at the Federal University of Rio Grande do Sul (UFRGS), a premier institution in Brazil and South America. His role encompasses undergraduate and graduate-level instruction, where he teaches courses in structural mechanics, plasticity, and fracture mechanics. In the classroom, Prof. Bittencourt is known for his rigorous and engaging teaching style that integrates theoretical depth with practical applications. Beyond teaching, he has been a prolific researcher in the field of computational mechanics and materials science. His primary research interests involve modeling isotropic and crystal plasticity and analyzing fracture behaviors in metals and quasi-fragile materials. Over the years, Prof. Bittencourt has supervised over 30 M.Sc. and Ph.D. students, as well as several post-doctoral fellows, thereby cultivating a strong academic lineage. His publication record includes more than 30 papers in prestigious journals, garnering approximately 800 citations. Additionally, he serves as a reviewer for high-impact journals like the International Journal of Plasticity and Engineering Fracture Mechanics. Through his professional roles, Prof. Bittencourt contributes significantly to both scientific progress and the education of future engineers and researchers.

Research Interest

Prof. Eduardo Bittencourt’s research interests are rooted in the intersection of computational mechanics, material science, and structural engineering. His work focuses extensively on the modeling and simulation of complex material behaviors, particularly in the realms of isotropic and crystal plasticity. He investigates how materials deform and fail under various loading conditions, aiming to enhance the accuracy of predictive models used in engineering design. A key area of his research involves the fracture mechanics of metallic and quasi-fragile materials, including their response to microstructural defects and external stresses. Prof. Bittencourt is particularly interested in developing computational tools that can simulate the initiation and propagation of cracks in these materials, contributing to safer and more efficient structural designs. His interdisciplinary approach combines principles from metallurgy, civil engineering, and mechanical analysis, providing valuable insights into how materials behave under real-world conditions. Furthermore, he applies these models to solve engineering problems ranging from aerospace to civil infrastructure. Through his research, Prof. Bittencourt seeks to bridge the gap between theoretical mechanics and practical engineering applications, fostering innovation in structural integrity assessment and materials development. His contributions not only advance academic understanding but also support industries in designing safer, longer-lasting systems.

Research Skills

Prof. Eduardo Bittencourt brings a comprehensive set of research skills that have established him as a leading figure in computational mechanics and material science. He possesses in-depth expertise in modeling isotropic and crystal plasticity, allowing him to simulate complex deformation patterns in metals and other structural materials. His proficiency in fracture mechanics enables him to predict crack initiation and propagation, critical for evaluating structural reliability. Prof. Bittencourt is highly skilled in using finite element analysis (FEA) tools and custom-developed algorithms for computational simulations, supporting both theoretical investigations and applied engineering problems. He has hands-on experience with high-level programming languages and simulation software, which he employs to create robust models for mechanical behavior. Moreover, his background in metallurgy and civil engineering equips him with the ability to interpret experimental results and integrate them into computational frameworks. His mentorship of more than 30 graduate students and postdoctoral researchers reflects his strengths in guiding research projects, designing experiments, and fostering scholarly collaboration. Prof. Bittencourt’s research skills are complemented by his ability to publish and review high-quality scientific literature, ensuring his work meets the rigorous standards of international research. These skills collectively contribute to advancing the frontiers of engineering science and education.

Awards and Honors

While specific awards and honors were not explicitly listed, Prof. Eduardo Bittencourt’s academic career is marked by recognition through various prestigious appointments and contributions to the scientific community. His position as a Full Professor at the Federal University of Rio Grande do Sul (UFRGS) signifies a high level of peer recognition and academic excellence within Brazil’s leading engineering institution. Being selected for a postdoctoral research position at Brown University, a world-renowned research university, is itself a notable accolade that reflects international acknowledgment of his scholarly potential and research capabilities. Additionally, his consistent role as a reviewer for leading scientific journals such as International Journal of Plasticity and Engineering Fracture Mechanics underscores the respect he commands within the research community. His successful supervision of over 30 graduate and postdoctoral researchers also reflects institutional trust in his mentorship and leadership. The accumulation of approximately 800 citations across more than 30 publications further demonstrates the impact and value of his research work. Although formal award titles are not detailed, Prof. Bittencourt’s achievements and appointments speak volumes about his professional standing, thought leadership, and lasting contributions to science and education.

Conclusion

Prof. Eduardo Bittencourt is an accomplished scholar whose interdisciplinary expertise and academic dedication have significantly influenced the fields of structural mechanics, computational modeling, and material science. From his foundational training in mechanical engineering and metallurgy to his advanced contributions in civil engineering and postdoctoral research at Brown University, he has demonstrated a lifelong commitment to learning and innovation. At the Federal University of Rio Grande do Sul, he has played a pivotal role in educating future engineers and researchers, while advancing cutting-edge studies in plasticity and fracture mechanics. His mentorship of over 30 graduate and postdoctoral students illustrates his dedication to academic development, and his contributions to scientific literature and peer review reflect his leadership in the global research community. Prof. Bittencourt’s work has bridged theoretical concepts with real-world engineering applications, contributing to safer and more efficient structural designs. Though not all his accolades may be formally listed, his academic trajectory is a testament to his influence and respect within the scientific community. His legacy lies not only in his publications and citations but also in the generations of students and professionals he has inspired and empowered through his teaching, research, and mentorship.

Publications Top Notes

  • Title: A comparison of nonlocal continuum and discrete dislocation plasticity predictions
    Authors: E. Bittencourt, A. Needleman, M.E. Gurtin, E. Van der Giessen
    Year: 2003
    Citations: 261

  • Title: Simulation of 3D metal-forming using an arbitrary Lagrangian–Eulerian finite element method
    Authors: J.L.F. Aymone, E. Bittencourt, G.J. Creus
    Year: 2001
    Citations: 78

  • Title: Finite element analysis of three-dimensional contact and impact in large deformation problems
    Authors: E. Bittencourt, G.J. Creus
    Year: 1998
    Citations: 68

  • Title: Constitutive models for cohesive zones in mixed-mode fracture of plain concrete
    Authors: L.N. Lens, E. Bittencourt, V.M.R. d’Avila
    Year: 2009
    Citations: 63

  • Title: Steel-concrete bond behavior: An experimental and numerical study
    Authors: M.P. Miranda, I.B. Morsch, D.S. Brisotto, E. Bittencourt, E.P. Carvalho
    Year: 2021
    Citations: 33

  • Title: Simulating bond failure in reinforced concrete by a plasticity model
    Authors: D.S. Brisotto, E. Bittencourt, V.M.R.A. Bessa
    Year: 2012
    Citations: 32

  • Title: On the effects of hardening models and lattice rotations in strain gradient crystal plasticity simulations
    Author: E. Bittencourt
    Year: 2018
    Citations: 27

  • Title: Interpretation of the size effects in micropillar compression by a strain gradient crystal plasticity theory
    Author: E. Bittencourt
    Year: 2019
    Citations: 24

  • Title: Dynamic explicit solution for higher-order crystal plasticity theories
    Author: E. Bittencourt
    Year: 2014
    Citations: 24

  • Title: Effective poroelastic behavior of a jointed rock
    Authors: S. Maghous, G. Lorenci, E. Bittencourt
    Year: 2014
    Citations: 14

Zheng Liu | Material Science | Best Researcher Award

Mr. Zheng Liu | Material Science | Best Researcher Award

Assistant Professor at College of Material Science and Engineering, State Ker Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, China

Zheng Liu is an emerging researcher specializing in materials science with a particular focus on glass composites, sealing technologies, and structural relaxation mechanisms. Currently serving as a Research Associate at the State Key Laboratory of Materials Low-Carbon Recycling, College of Material Science and Engineering, Beijing University of Technology, Dr. Liu is committed to advancing the fundamental understanding and practical performance of glass-to-metal sealing systems. His academic path began with a Bachelor’s degree in Powder Metallurgy at Central South University and was furthered by a rigorous doctoral program at the Institute of Nuclear and New Energy Technology, Tsinghua University. With a strong foundation in both theoretical analysis and applied research, he has authored numerous impactful publications in top-tier journals such as the Journal of the American Ceramic Society, Ceramics International, and Physical Chemistry Chemical Physics. His research has garnered recognition and funding from the National Natural Science Foundation of China. Zheng Liu is driven by a mission to enhance material reliability in high-temperature and energy environments, and he continues to contribute to China’s innovation landscape through both research excellence and collaborative efforts in materials engineering.

Professional Profile

Education

Zheng Liu pursued his academic training at two of China’s most prestigious institutions, establishing a robust interdisciplinary foundation in materials science. He earned his Bachelor’s degree in Powder Metallurgy from the Powder Metallurgy Research Institute at Central South University, Changsha, between 2016 and 2020. During this period, he gained essential knowledge in advanced ceramics, metallurgy, and composite materials, which laid the groundwork for his future specialization in sealing and glass systems. To deepen his scientific rigor and research capabilities, he then enrolled in a Ph.D. program at the Institute of Nuclear and New Energy Technology, Tsinghua University, from September 2020 to June 2025. His doctoral work focused on the atomic-level dynamics of glass and glass-metal interfaces, a subject vital to energy applications and thermal engineering. Through his education, he acquired sophisticated analytical skills and became proficient in spectroscopic and computational tools, all of which are critical to understanding complex glass behaviors. These formative academic experiences equipped him with a unique blend of theoretical insight and practical proficiency, empowering him to tackle key challenges in low-carbon material development and glass sealing technologies.

Professional Experience

Zheng Liu began his professional research career in July 2025 as a Research Associate at the Beijing University of Technology, affiliated with the State Key Laboratory of Materials Low-Carbon Recycling in the College of Material Science and Engineering. His role involves leading and collaborating on critical projects related to glass-to-metal sealing, structural relaxation, and thermal-mechanical behavior in advanced materials. In this capacity, Dr. Liu applies his deep knowledge of borosilicate glass systems and their interaction with metallic substrates, particularly under high-temperature conditions. His responsibilities also include conducting photoluminescence spectroscopy, finite-element modeling, and thermal analysis to study stress evolution and interfacial behavior. Working in a multidisciplinary research environment, he coordinates with fellow scientists and engineers to translate theoretical knowledge into materials that meet industrial demands for efficiency, durability, and environmental sustainability. Prior to this appointment, his doctoral work was enriched with hands-on research projects and collaborations across materials science labs, where he demonstrated the ability to manage complex experiments and publish impactful findings. His early career reflects a strong trajectory of research commitment, innovative thinking, and technical excellence, setting the stage for significant contributions in the field of structural materials and sustainable engineering.

Research Interest

Zheng Liu’s research interests lie at the intersection of materials science, nuclear engineering, and applied physics, with a focus on glass/glass composite systems, advanced sealing materials, and structural relaxation phenomena. He is particularly intrigued by the mechanical behavior of glass-to-metal seals under thermal and mechanical stress, aiming to enhance their stability, performance, and longevity. A significant portion of his research explores the residual stress mechanisms in glass composites, with an emphasis on how glass solidification and interfacial bonding affect stress distribution. His investigations extend into photoluminescence spectroscopy as a tool for detecting microregion stress and the use of finite-element modeling for predictive stress analysis. Dr. Liu is also committed to understanding how additives like alumina nanoparticles influence glass properties at the atomic and structural levels. These interests are deeply aligned with developing next-generation sealing materials for nuclear, aerospace, and energy systems. His current work contributes to the broader scientific goal of optimizing the thermal-mechanical integration of dissimilar materials. Driven by real-world applications and sustainability concerns, Dr. Liu seeks to advance low-carbon material solutions that can withstand harsh environments while maintaining functional integrity over extended service lives.

Research Skills

Zheng Liu possesses a comprehensive suite of research skills that underpin his cutting-edge work in materials science. He is proficient in a wide range of experimental techniques including photoluminescence spectroscopy, X-ray diffraction, thermal analysis (DSC/TGA), and electron microscopy (SEM/TEM), which he uses to characterize material interfaces and microstructural behavior. Additionally, he has strong expertise in finite-element modeling and simulation tools to investigate stress distribution and failure mechanisms in glass-to-metal seals. His ability to design and implement experiments on glass solidification and bonding behavior is supported by his deep understanding of structural relaxation at atomic and macroscopic scales. Zheng Liu is also adept at statistical analysis and data interpretation, ensuring the rigor and reliability of his findings. His experience with high-temperature furnace systems and controlled atmosphere conditions enables him to replicate industrial sealing environments accurately. Beyond technical skills, Dr. Liu has honed his scientific writing, grant proposal development, and collaborative research management, allowing him to contribute effectively to multidisciplinary teams. With a focus on precision, innovation, and problem-solving, his skill set is aligned with the demands of modern materials research and application in energy and structural systems.

Awards and Honors

Zheng Liu’s promising research career has already been recognized with prestigious support and accolades. Most notably, he secured funding from the National Natural Science Foundation of China (Grant No. 523B2008) for the period of May 2024 to December 2025. This grant is a testament to the national recognition of his innovative work in glass-to-metal seals and low-carbon materials. His scientific contributions have resulted in the publication of eleven peer-reviewed articles in high-impact journals such as Journal of the American Ceramic Society, AIP Advances, and Ceramics International. Several of these papers have addressed critical issues in stress distribution and interfacial bonding, providing novel insights into thermal-mechanical behavior in composite materials. His ability to consistently publish significant research has earned him a growing reputation among peers and senior academics alike. During his doctoral and undergraduate studies, he was also likely to have received institutional recognitions for academic excellence and research engagement, although specific honors were not explicitly detailed. His early-career achievements position him as a rising figure in the field of functional materials for high-performance and energy-critical applications.

Conclusion

Zheng Liu stands out as a talented early-career researcher with a focused expertise in glass composites and sealing technologies, poised to make lasting contributions to the field of materials science. His academic foundation, built at Central South University and Tsinghua University, is complemented by a robust portfolio of research that bridges theoretical investigation with practical application. Now serving as a Research Associate at the Beijing University of Technology, he applies his skills to address critical challenges in low-carbon materials and energy systems. His publications reveal a consistent dedication to solving real-world problems, particularly in the optimization of glass-to-metal seals and structural integrity under stress. Funded by the National Natural Science Foundation of China, Zheng Liu continues to build a body of work that is both scientifically rigorous and industrially relevant. With strong analytical abilities, technical proficiency, and a clear vision for sustainable materials innovation, he represents the next generation of scholars committed to transforming the way we understand and engineer functional materials. His career trajectory suggests a future rich with discovery, collaboration, and meaningful societal impact in the domain of energy-efficient and high-performance materials.

Publications Top Notes

  1. Title: Assessing residual stress generation and entrapment in glass-to-metal seals: role of glass solidification during the cooling process
    Authors: Keqian Gong, Chao Zhou, Zheng Liu, Zifeng Song, Zhangjing Shi, Weisong Zhou, Yong Zhang
    Year: 2025

  2. Title: Atomic origin and dynamics of structural relaxation in borosilicate glass below glass transition temperature
    Authors: Zheng Liu, Keqian Gong, Zifeng Song, Chao Zhou
    Year: 2025

  3. Title: Strain rebound and inhomogeneity in glass-to-metal seals: Radial vs axial strain evolution
    Authors: Keqian Gong, Zheng Liu, Zifeng Song, Chao Zhou, Zhangjing Shi, Siyue Nie, Weisong Zhou, He Yan, Zhichun Fan, Yong Zhang
    Year: 2025

  4. Title: Revealing the effect of alumina addition on the residual stress in glass-to-metal seals via photoluminescence spectroscopy
    Authors: Keqian Gong, Zheng Liu, Yangyang Cai, Zifeng Song, Chao Zhou, Jing Liu, Yuna Zhao, Yong Zhang
    Year: 2024

  5. Title: Sealing Ni-Cr/Ni-Al alloys with borosilicate glass: Bonding strength, sealing interface, and fracture behavior
    Authors: Zheng Liu, Chao Zhou, Keqian Gong, Yanfei Sun, Cheng Ren, Zifeng Song, Zhangjing Shi, Yong Zhang
    Year: 2024

  6. Title: Assessment of residual stress evolution in glass-to-metal seals amid heating process: Insights from in situ observations and finite-element analysis
    Authors: Keqian Gong, Zifeng Song, Yangyang Cai, Zheng Liu, Zhangjing Shi, Chao Zhou, He Yan, Yong Zhang
    Year: 2024

  7. Title: Strength, microstructure and bonding mechanism of borosilicate glass-to-SA105 carbon steel seals
    Authors: Zheng Liu, Yangyang Cai, Keqian Gong, Chao Zhou, Chen Wang, Yuna Zhao, Yong Zhang
    Year: 2024

  8. Title: Photoluminescence spectroscopy to detect microregion stress distribution in glass‐to‐metal seals
    Authors: Zheng Liu, Keqian Gong, Yangyang Cai, Zhen Chen, Yong Zhang
    Year: 2024

  9. Title: Calibration for determination of compressive stress in glass‐to‐metal seals via photoluminescence spectroscopy
    Authors: Zheng Liu, Yangyang Cai, Keqian Gong, Weisong Zhou, Fengen Chen, Yong Zhang
    Year: 2024

  10. Title: Optimization mechanism and high-temperature properties of Al₂O₃/Cu-reinforced sealing glass
    Authors: Yangyang Cai, Zheng Liu, Keqian Gong, He Yan, Yuna Zhao, Yong Zhang
    Year: 2024

  11. Title: Effects of Al₂O₃ nanoparticles on the properties of glass matrix composites for sealant applications
    Authors: Zheng Liu, Keqian Gong, Chao Zhou, Zifeng Song, Yong Zhang
    Year: 2023

Abdul Manan | Material Science | Best Researcher Award

Dr. Abdul Manan | Material Science | Best Researcher Award

Associate Professor at University of Science & Technology Bannu, Pakistan

Dr. Abdul Manan is an accomplished Associate Professor in the Department of Physics at the University of Science & Technology (UST), Bannu, Pakistan. With a Ph.D. in Physics from the University of Peshawar and significant research exposure at The University of Sheffield (UK), Wuhan University of Technology (China), and Pennsylvania State University (USA), Dr. Manan has emerged as a recognized expert in materials science and applied physics. His research contributions are extensive, with over 40 high-impact international publications and a strong record of academic excellence and innovation. Dr. Manan’s work centers on advanced ceramics, dielectric materials, and energy storage systems, where he consistently explores the nexus between materials design and sustainable energy solutions. His active participation in national and international scientific committees, editorial boards, and technical programs reflects his commitment to research leadership and academic mentorship. Dr. Manan’s numerous awards from the Higher Education Commission of Pakistan and international research societies underscore his valuable contributions to science and technology, making him a leading figure in his field. As an educator, researcher, and scientific ambassador, he continues to elevate Pakistan’s profile in the global academic community through excellence in research, teaching, and service.

Professional Profile

Education

Dr. Abdul Manan’s academic journey reflects a consistent pursuit of excellence. He earned his Ph.D. in Physics from the University of Peshawar (2006–2011), where he conducted cutting-edge research at the Department of Materials Science and Engineering, The University of Sheffield, UK. Before his doctorate, he completed his M.Sc. in Physics (2002–2004) and B.Sc. in Physics and Mathematics (2000–2002) from the University of Peshawar and Gomal University respectively, securing first divisions throughout. He laid the foundation of his academic career with high achievements in his pre-engineering (HSSC) and science (SSC) studies from BISE Bannu. To further enrich his research acumen, he undertook two prestigious postdoctoral fellowships—first at the School of Materials Science and Engineering, Wuhan University of Technology (2017), and later at the Materials Research Institute, Penn State University, USA (2023). These international experiences greatly broadened his scientific perspective, particularly in dielectric materials and ceramics for energy applications. This robust academic background, enriched with international exposure and multidisciplinary training, positions Dr. Manan as a leader in physics and materials science research in Pakistan and beyond.

Professional Experience

Dr. Abdul Manan’s career spans diverse teaching and research roles that reflect his progression from a young researcher to a seasoned academic leader. His professional journey began as a Research Assistant at the University of Peshawar, followed by a lecturer position at Islamia College Peshawar. He further contributed as a visiting research scholar at The University of Sheffield, UK, and later taught at Khyber Medical University. In 2011, he was appointed Assistant Professor at UST Bannu and held the same post at Islamia College Peshawar before rejoining UST Bannu in 2015. Since October 2021, he serves as Associate Professor at UST Bannu, contributing to curriculum development, mentoring, and high-impact research. He has also held significant administrative roles including Chief Proctor, Director ORIC, Chairman of the Department of Physics, and Warden for Boys’ Hostels. Through these roles, Dr. Manan has demonstrated leadership in institutional development, academia-industry linkages, and student engagement. His broad professional experience has nurtured a multidisciplinary approach, reinforcing his capabilities in teaching, research, and university governance.

Research Interests

Dr. Abdul Manan’s research interests lie primarily in the field of materials science, with a strong focus on advanced ceramics, dielectric materials, piezoelectric systems, and energy storage devices. He is particularly interested in exploring the structural, electrical, and thermal behaviors of lead-free ceramics, a crucial domain in sustainable energy technology. His work involves designing new ceramic compositions, such as BaTiO3- and NaNbO3-based systems, to improve electrocaloric effects, dielectric constants, and storage efficiencies. He also has a keen interest in nanomaterials for sensing applications, microwave dielectric ceramics, and photoluminescent materials for LEDs. His recent studies on grain boundary effects, domain engineering, and microstructural tuning demonstrate his depth in the experimental and computational study of materials. Moreover, Dr. Manan actively contributes to collaborative research addressing global energy and environmental challenges. His ongoing projects aim to innovate smart materials for pulsed power capacitors and green electronics. This convergence of fundamental science and applied research underscores his commitment to scientific advancement with practical societal impact.

Research Skills

Dr. Abdul Manan possesses a comprehensive array of research skills in experimental physics and materials science. His technical proficiency includes ceramic processing techniques such as solid-state reaction, hydrothermal synthesis, and sol-gel methods. He is adept at characterizing materials using tools like XRD, SEM, impedance spectroscopy, and dielectric analyzers to investigate phase composition, microstructure, and electrical properties. Dr. Manan also demonstrates strong expertise in thermal analysis and energy storage characterization, essential for capacitor-grade material development. Additionally, his exposure to computational modeling and DFT simulations enables him to complement experimental findings with theoretical insights. He has a proven track record of conducting interdisciplinary research across institutions in China, the UK, and the USA. His editorial roles across several international journals further exhibit his deep understanding of peer-review processes, manuscript preparation, and scientific publishing. Dr. Manan’s ability to lead collaborative projects, mentor students, and publish impactful research articles highlights his exceptional capabilities in academic research and innovation.

Awards and Honors

Dr. Abdul Manan has received numerous awards that reflect his dedication to research excellence. He was awarded the prestigious Best Researcher Award in Materials Science by ScienceFather in 2024. His postdoctoral studies were supported by competitive grants from the Higher Education Commission (HEC) of Pakistan, including IRSIP and Interim Placement of Fresh PhDs. Dr. Manan received multiple travel and research grants from HEC for participating in international conferences such as the IEEE ISAF-ISIF-PFM 2023 (USA), Electroceramics XIV (Romania), and the Pacific Rim Conference on Ceramic and Glass Technology (Canada, 2025). Additionally, The Pennsylvania State University awarded him publication and conference support funding in 2023. These honors signify recognition from both national and global research communities. He is also an active member of editorial boards and scientific committees, including for journals like the Journal of Electronic Research and Application, Modern Materials Science and Technology, and the Indonesian Journal of Materials Research. These distinctions underline his growing influence as a global academic contributor.

Conclusion

Dr. Abdul Manan stands as a paragon of academic excellence, research innovation, and institutional leadership. His contributions span the breadth of experimental physics and materials science, with a clear focus on developing sustainable energy materials. He has successfully bridged international collaborations, integrated advanced characterization techniques into his work, and mentored future scientists across multiple institutions. Beyond his research, his administrative roles as Director ORIC, Chief Proctor, and Chairman of the Physics Department reflect his dedication to academic governance and policy development. His prolific publication record, ongoing international collaborations, and editorial responsibilities position him as a highly respected figure in the global scientific community. Looking ahead, Dr. Manan is poised to further elevate his impact through advanced interdisciplinary research and policy-driven academic leadership. With a rare blend of scientific acumen, teaching experience, and institutional service, he exemplifies the modern scientist-educator and continues to make significant contributions toward technological advancement and educational excellence in Pakistan and beyond.

Publications Top Notes

  • Title: Achieving high electrostrain performance in BNT‑based lead‑free piezoelectric ceramics modified by Sr(Sn₀.₅Ta₀.₄)O₃
    Authors: Abdul Manan, et al.
    Year: 2025

  • Title: Enhanced electrocaloric effect in BaTiO₃‑based ceramics over a wide working temperature range by domain engineering
    Authors: Abdul Manan, et al.
    Year: 2025

  • Title: Dielectric, impedance, and energy storage properties of Bi(Mg₀.₅Sn₀.₅)O₃‑modified Bi₀.₅Na₀.₅TiO₃ based ceramics
    Authors: Abdul Manan, et al.
    Year: 2025
    Citations: 2

  • Title: Achievement of high energy density and efficiency in Bi(Mg₀.₅Hf₀.₅)O₃ modified Ba₀.₅₅Sr₀.₄₅TiO₃ ceramics
    Authors: Abdul Manan, et al.
    Year: 2025

  • Title: Achieving improved dielectric energy storage properties in Na₀.₄₅₀₅Bi₀.₃₈₂₅Sr₀.₁₃₆Nb₀.₀₈₅Er₀.₀₁₅TiO₃ ferroelectric ceramics via La modification and processing optimization
    Authors: Abdul Manan, et al.
    Year: 2025

  • Title: Enhanced dielectric energy storage properties of PLZST relaxor‑antiferroelectric ceramics achieved via phase transition modulation and processing optimization
    Authors: Abdul Manan, et al.
    Year: 2025

  • Title: A DFT study to explore structural, electronic, optical and mechanical properties of lead‑free Na₂MoXO₆ (X = Si, Ge, Sn) double perovskites for photovoltaic and optoelectronic applications
    Authors: Abdul Manan, et al.
    Year: 2024
    Citations: 6

  • Title: Structural, dielectric, electrical, and energy storage properties of Mn‑doped Ba₀.₅₅Sr₀.₄₅TiO₃ ceramics
    Authors: Abdul Manan, et al.Year: 2024
    Citations: 7

Juan de Pablo | Materials Science | Best Researcher Award

Prof. Juan de Pablo | Materials Science | Best Researcher Award

Professor and Vice President at New York University, United States

Dr. Juan José de Pablo is an internationally recognized leader in molecular engineering and materials science, currently serving as Professor and Vice President at New York University. With a distinguished academic and professional trajectory spanning over three decades, Dr. de Pablo has made pioneering contributions to soft matter physics, polymer engineering, and computational materials science. He has authored over 700 peer-reviewed publications and holds an H-index exceeding 120, reflecting the profound influence of his research. His recent roles include Executive Vice President for Global Science and Technology and Executive Dean of the Tandon School of Engineering at NYU, following a decade-long tenure at the University of Chicago. At the latter, he directed pivotal research centers and contributed to national laboratories like Argonne and Fermilab. A member of the U.S. National Academies of Engineering and Sciences, Dr. de Pablo’s interdisciplinary approach integrates theory, computation, and experimentation. His leadership in establishing large-scale scientific initiatives and educational outreach reflects a deep commitment to innovation, mentorship, and societal impact through science.

Professional Profile

Education

Dr. de Pablo began his academic journey with a Bachelor’s degree in Chemical Engineering from the National University of Mexico (UNAM) in 1985. He proceeded to earn a Ph.D. in Chemical Engineering from the University of California, Berkeley in 1990, a period during which he laid the foundation for his interest in polymeric systems and thermodynamics. Following this, he undertook a postdoctoral fellowship at ETH Zurich’s Institute for Polymers from 1990 to 1992, specializing in materials science. These formative years were instrumental in shaping his interdisciplinary research vision, blending rigorous theoretical training with practical insights. His educational background demonstrates a consistent trajectory toward advanced computational and molecular-level analysis of soft matter. The combination of leading North American and European institutions in his training reflects the global dimension of his perspective on science and engineering. These experiences equipped him with the skills to later lead international collaborations and scientific enterprises that bridge multiple disciplines, from nanotechnology to biophysics.

Professional Experience

Dr. de Pablo’s professional career is marked by leadership in academia, research management, and global scientific strategy. His early academic appointments were at the University of Wisconsin, where he progressed from Assistant to Full Professor of Chemical Engineering between 1992 and 2012. During this period, he also served as Director of the Materials Research Science and Engineering Center (MRSEC) and Deputy Director of the Nanoscale Science and Engineering Center (NSEC), driving frontier research in materials design and nanotechnology. In 2012, he joined the University of Chicago as the Liew Family Professor in the Institute for Molecular Engineering and Senior Scientist at Argonne National Laboratory. He later held multiple vice-presidential roles, overseeing national laboratories and leading global science initiatives. Currently, as Executive Vice President for Global Science and Technology and Executive Dean of NYU’s Tandon School of Engineering, he continues to shape science policy, innovation ecosystems, and advanced education. His leadership roles at UChicago-Argonne LLC and the Center for Hierarchical Materials Design (CHiMaD) further underscore his expertise in strategic research development and interdisciplinary collaboration.

Research Interest

Dr. de Pablo’s research interests span a broad spectrum within molecular and materials engineering, including soft condensed matter, computational thermodynamics, polymer physics, and biomolecular simulations. He has been instrumental in developing novel simulation techniques that enable a molecular-level understanding of materials behavior under complex conditions. His work frequently integrates theoretical frameworks with experimental data, enabling predictive modeling of systems ranging from liquid crystals to nucleic acids. More recently, he has expanded into machine learning-guided materials discovery and the design of functional materials for health, sustainability, and electronics. He is also deeply engaged in the Materials Genome Initiative, contributing to the national agenda for accelerating materials innovation. Dr. de Pablo’s research not only advances fundamental science but also facilitates translational outcomes, such as in the stabilization of biologics, nanofabrication, and soft robotics. His interdisciplinary and collaborative approach has positioned him at the forefront of modern materials science, with sustained funding from national agencies and partnerships with industry.

Research Skills

Dr. de Pablo’s research skills are characterized by exceptional breadth and depth in theoretical, computational, and applied materials science. He has pioneered algorithms for calculating free energies, explored phase transitions in complex fluids, and designed coarse-grained models for large biomolecules. His fluency in molecular dynamics, Monte Carlo simulations, and density-of-states methods is complemented by expertise in high-performance computing and GPU acceleration. He applies these tools to problems in polymer behavior, nanostructured materials, and biointerfaces. Dr. de Pablo also has deep knowledge of lithography, directed self-assembly, and patterning technologies, as evidenced by his multiple U.S. patents in these areas. Moreover, he plays a leading role in training the next generation of scientists, having supervised over 70 Ph.D. students. His entrepreneurial activities and editorial roles reflect a commitment to disseminating innovation and shaping the scientific discourse. These research capabilities, coupled with leadership in large-scale initiatives and advisory committees, make Dr. de Pablo a uniquely effective figure in both advancing science and mentoring talent.

Awards and Honors

Dr. de Pablo’s illustrious career has been recognized with over 60 prestigious awards, fellowships, and honors, reflecting his outstanding contributions to science, education, and leadership. Early in his career, he received multiple young investigator awards from the NSF, IBM, Xerox, and 3M. Notably, he was honored with the Presidential Early Career Award in Science and Engineering (PECASE) and the Presidential Faculty Fellow Award by President Clinton. He has since delivered over 40 named lectures, including the Paul Flory, Marie Curie, and Samuel C. Johnson Distinguished Lectures. Dr. de Pablo is an elected Fellow of the American Physical Society, American Academy of Arts and Sciences, and a Member of both the National Academy of Engineering and National Academy of Sciences. His recent recognitions include the Polymer Physics Prize, DuPont Medal for Excellence, and international accolades such as the Chevalier de l’Ordre du Mérite (France). These honors highlight not only his scientific excellence but also his impact as an educator, innovator, and global science diplomat.

Conclusion

Dr. Juan José de Pablo’s career exemplifies the integration of scientific brilliance, visionary leadership, and a deep commitment to global collaboration and mentorship. From his foundational training in Mexico and the U.S. to his leadership at premier institutions like the University of Chicago and NYU, he has continuously advanced the frontiers of molecular engineering and materials science. His interdisciplinary research, extensive publication record, and innovative patent portfolio showcase both depth and translational relevance. Beyond his technical achievements, Dr. de Pablo’s influence on science policy, education, and diversity initiatives reflects a holistic vision for the role of science in society. As an advisor, editor, and entrepreneur, he fosters environments where cutting-edge research meets real-world challenges. His legacy is further amplified through the numerous students and researchers he has mentored, many of whom have become leaders in their own right. Dr. de Pablo remains an inspirational figure whose work bridges disciplines, institutions, and continents in the pursuit of scientific progress and societal advancement.

Publications Top Notes

Title: Water-mediated ion transport in an anion exchange membrane
Authors: Juan J De Pablo
Year: 2025
Citations: 2

Title: Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering
Authors: Juan J De Pablo
Year: 2025
Citations: 1

Title: Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
Authors: Juan J De Pablo
Year: 2025

Title: Synthetic Active Liquid Crystals Powered by Acoustic Waves
Authors: Juan J De Pablo
Year: 2025

Title: Current Advances in Genome Modeling Across Length Scales
Authors: Juan J De Pablo
Year: 2025

Title: Chromatin structures from integrated AI and polymer physics model
Authors: Juan J De Pablo
Year: 2025
Citations: 1

Title: A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions
Authors: Juan J De Pablo
Year: 2025

Title: Bio-Based Surfactants via Borrowing Hydrogen Catalysis
Authors: Juan J De Pablo
Year: 2025

Title: Efficient sampling of free energy landscapes with functions in Sobolev spaces
Authors: Juan J De Pablo
Year: 2025
Citations: 1

Title: 3D Nano-architected Polymer Shell Enables Reconfigurable Stabilized Blue Phase Soft Crystals
Authors: Juan J De Pablo
Year: 2025

Zhen Zhang | Material Science | Best Researcher Award

Prof. Dr. Zhen Zhang | Material Science | Best Researcher Award

Professor, Doctoral Supervisor at Northwestern Polytechnical University, China

Prof. Zhen Zhang, currently serving as Professor and Doctoral Supervisor at Northwestern Polytechnical University, is an internationally recognized expert in energy electrocatalysis. He earned his Ph.D. from the University of Waterloo, Canada, where he later served as a Postdoctoral Fellow and Senior Researcher. His return to China marked the beginning of an impressive academic career supported by recognitions such as the Shaanxi Province High-Level Talent title, Young Talent of Xi’an Association for Science and Technology, and Aoxiang Overseas Scholar. Prof. Zhang has authored over 50 SCI-indexed papers with appearances in high-impact journals including JACS, Advanced Materials, Angewandte Chemie, and ACS Nano. He has published 14 ESI Highly Cited Papers, earning over 5,500 citations and an H-index of 38. Notably, he also leads over a dozen national and industrial research projects. His global collaborations, prestigious fellowships, and key editorial roles across several journals underscore his leadership in catalysis and electrochemical energy research. Through groundbreaking research in confined electrocatalysis, he continues to push the boundaries of fuel cells, CO₂ reduction, and hydrogen energy systems, making him a compelling candidate for the Best Researcher Award.

Professional Profile

Education

Prof. Zhang completed his Ph.D. in a highly competitive and research-intensive environment at the University of Waterloo, Canada, a world-leading institution in nanotechnology and electrochemical systems. During his doctoral training, he focused on fundamental and applied aspects of electrochemical energy systems, particularly in the development of functional nanomaterials for electrocatalysis. His strong academic performance and early research breakthroughs earned him numerous accolades, including the Ontario Graduate Scholarship, University of Waterloo President’s Graduate Scholarship, and the prestigious Chinese Government Award for Outstanding Self-Financed Students Abroad. These honors, limited to a small number of exceptional scholars, underscore his academic excellence and research potential. After obtaining his doctorate, he continued his academic journey at the same institution as a Postdoctoral Fellow and later as a Senior Researcher. His postdoctoral work laid a strong foundation for advanced material design and electrochemical process innovation, preparing him for his subsequent independent career in China. This robust academic background underpins his expertise in energy electrocatalysis and has greatly contributed to his impactful research in designing confined active sites and scalable electrocatalytic systems for sustainable energy applications.

Professional Experience

Prof. Zhen Zhang brings a wealth of academic and industrial research experience in electrocatalytic energy systems. After completing his Ph.D. and postdoctoral training at the University of Waterloo, he transitioned into senior research roles and significantly contributed to projects at the Waterloo Centre for Electrochemical Energy and the Ontario Battery and Electrochemistry Research Centre. His leadership roles extended to Canada’s national facilities, including the Canadian Light Source (CLS), where he spearheaded collaborative efforts in synchrotron spectroscopy. Upon joining Northwestern Polytechnical University, he quickly rose to prominence, assuming the role of Professor and Doctoral Supervisor and securing multiple high-level talent recognitions. He leads a total of 16 research projects, including national and provincial initiatives and a major industrial collaboration funded with 30 million RMB focused on fuel cell technologies. Prof. Zhang holds editorial appointments in top-tier journals and serves as a session chair at international conferences, illustrating his status in the global scientific community. His industrial experience is equally strong, with practical applications of his research findings in battery technologies and fuel cells, further enhanced through partnerships with global research leaders. Prof. Zhang exemplifies the ideal academic leader who bridges high-impact research with real-world applications.

Research Interest

Prof. Zhang’s research centers on the design and development of advanced energy electrocatalytic materials and systems. His main areas of focus include the CO₂ reduction reaction (CO₂RR), oxygen reduction/evolution reactions (ORR/OER), and hydrogen evolution/oxidation reactions (HER/HOR), all of which are central to the future of sustainable energy conversion and storage. He is particularly renowned for his innovations in confined electrocatalytic systems, where he manipulates the local chemical environment and structure at atomic scales to enhance activity, selectivity, and stability. Prof. Zhang has proposed novel frameworks for functional confined supports, hierarchical structures, and atomically dispersed active sites. His work is instrumental in breaking conventional performance trade-offs in catalysts by enabling dynamic modulation of catalytic behavior. Applications of his research span electrosynthesis, fuel cells, water electrolysis, and metal–air batteries. He integrates in situ spectroscopy and imaging tools to unravel catalyst dynamics, pushing the boundaries of fundamental understanding. His vision is to develop scalable, high-efficiency electrocatalytic systems that enable clean energy technologies, particularly for global carbon neutrality goals. Prof. Zhang’s interdisciplinary approach, combining chemistry, materials science, and engineering, positions him at the forefront of next-generation energy materials research.

Research Skills

Prof. Zhen Zhang is an expert in advanced electrochemical characterization, in situ synchrotron spectroscopy, and the rational design of nanostructured electrocatalysts. His skill set encompasses the synthesis of confined electrocatalytic structures, including zeolite-based conductive supports, bimetallic nanocatalysts, and atomic-scale active centers. He is proficient in electrochemical testing techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and membrane electrode assembly (MEA) fabrication. His strong command of in situ/operando techniques using synchrotron X-ray absorption, XPS, and transmission electron microscopy allows him to study the dynamic evolution of catalyst structures under working conditions. Prof. Zhang is adept at integrating theoretical simulations with experimental results to elucidate reaction mechanisms and guide material design. His leadership in project management is evidenced by his coordination of 16 funded projects, including industrial and interdisciplinary collaborations. Additionally, his editorial and peer-review responsibilities in high-impact journals demonstrate his critical analytical skills. His international collaborations reflect his ability to foster scientific exchange and execute large-scale research initiatives across borders. Prof. Zhang’s rare combination of synthetic, analytical, and collaborative skills makes him a uniquely effective researcher and mentor in the fast-evolving field of energy materials.

Awards and Honors

Prof. Zhen Zhang has received a distinguished array of awards and fellowships that highlight his contributions to energy research and academic leadership. Internationally, he was recognized with the Advanced Materials Award from the International Association of Advanced Materials and the prestigious Canadian Mitacs Accelerate Award—awarded to only ten individuals across Canada. As a doctoral student, he earned the highly competitive Chinese Government Award for Outstanding Self-Financed Students Abroad and the Waterloo Nanofellowship. These achievements underscore his excellence during his formative academic years. Nationally, he was named a Shaanxi Province High-Level Talent and selected as a Young Talent of the Xi’an Association for Science and Technology. He was also awarded the Aoxiang Overseas Scholar title and the University of Waterloo’s President’s Graduate Scholarship and Research Paper Award—each granted to fewer than ten scholars annually. These accolades reflect both his pioneering research in electrocatalysis and his leadership in international collaboration. As a Fellow of the Chinese Chemical Society and the Chinese Materials Research Society, Prof. Zhang continues to shape policy and innovation in material sciences. His awards affirm not just past success but a sustained trajectory of excellence and influence in advanced materials and electrochemistry.

Conclusion

Prof. Zhen Zhang is an exceptional scholar whose academic journey from the University of Waterloo to Northwestern Polytechnical University exemplifies scientific rigor, innovation, and leadership. With a research portfolio that seamlessly integrates fundamental science and industrial application, he has emerged as a trailblazer in energy electrocatalysis. His over 50 publications in top-tier journals, 14 ESI Highly Cited Papers, and an H-index of 38 reflect both the depth and impact of his work. His strong international collaborations, including with world-renowned scientists and institutions such as Argonne National Laboratory, McMaster University, and the Canadian Light Source, further validate his global research presence. Prof. Zhang’s editorial roles, fellowship in major chemical societies, and leadership in multimillion-yuan projects underscore his capability as a strategic thinker and institution-builder. His pioneering contributions to confined catalytic systems are addressing some of the most urgent global challenges in sustainable energy. As a scientist, mentor, and international collaborator, Prof. Zhang embodies the ideals of the Best Researcher Award, not only for his remarkable accomplishments but also for the promise his work holds for the future of clean energy. He is a role model for emerging researchers and a pillar in the global scientific community.

Publications Top Notes

 

  1. Title: Microporous framework membranes for precise molecule/ion separations
    Authors: H. Dou, M. Xu, B. Wang, Z. Zhang, G. Wen, Y. Zheng, D. Luo, L. Zhao, A. Yu, …
    Year: 2021
    Citations: 285

  2. Title: Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries
    Authors: D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, …
    Year: 2021
    Citations: 279

  3. Title: Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO₂
    Authors: J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, …
    Year: 2022
    Citations: 244

  4. Title: Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb₂O₅–x nanocluster toward superior Li–S performance
    Authors: D. Luo#, Z. Zhang# (co-first author), G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, …
    Year: 2020
    Citations: 237

  5. Title: Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries
    Authors: Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang, X. Gong, X. Sui, A. Yu, L. Zhao, …
    Year: 2020
    Citations: 218

  6. Title: Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium–sulfur batteries
    Authors: D. Luo, G. Li, Y. P. Deng, Z. Zhang, J. Li, R. Liang, M. Li, Y. Jiang, W. Zhang, …
    Year: 2019
    Citations: 216

  7. Title: Rational design of tailored porous carbon-based materials for CO₂ capture
    Authors: Z. Zhang, Z. P. Cano, D. Luo, H. Dou, A. Yu, Z. Chen
    Year: 2019
    Citations: 213

  8. Title: Regulation of outer solvation shell toward superior low‐temperature aqueous zinc‐ion batteries
    Authors: Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng, T. Or, L. Yang, Q. Li, Q. Cu, R. Feng, …
    Year: 2022
    Citations: 212

  9. Title: “Two Ships in a Bottle” Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting CO₂ Electroreduction
    Authors: Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, …
    Year: 2021
    Citations: 200

  10. Title: Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO₂ electroreduction
    Authors: B. Ren, G. Wen, R. Gao, D. Luo, Z. Zhang, W. Qiu, Q. Ma, X. Wang, Y. Cui, …
    Year: 2022
    Citations: 191

Cavus Falamaki | Nanotechnology | Scientific Contribution Award

Prof. Cavus Falamaki | Nanotechnology | Scientific Contribution Award

Professor of Amirkabir University of Technology, Iran

Prof. Cavus Falamaki, born in 1964 in Italy, is a distinguished chemical engineer and Full Professor at Amirkabir University of Technology (AUT), Tehran. He holds a Ph.D. in Chemical Engineering from AUT, with part of his doctoral work completed at ETH Zurich, focusing on zeolite crystallization. With over two decades of academic experience, he has served in key positions at AUT and the Materials and Energy Research Center (MERC). His research encompasses zeolite synthesis, catalytic processes, membrane technology, nano-materials, and environmental engineering, with expertise in both theoretical modeling and practical applications. He has led numerous industrial and academic projects in fields like water treatment, CO₂ conversion, and nanoparticle synthesis, often integrating green chemistry and sustainable technologies. Prof. Falamaki is multilingual and actively contributes to teaching, research, and innovation. His achievements have earned him national and international recognition, including awards from Iran’s Biotech Festival, the Cyber International Genius Inventor Fair in South Korea, and honors in nanotechnology research. He is widely published and recognized for bridging fundamental science with real-world engineering solutions. Through his academic leadership and multidisciplinary work, he remains a key contributor to advancements in chemical engineering, catalysis, and nanotechnology, with ongoing contributions to science and industry alike.

Professional Profile

Education

Prof. Cavus Falamaki earned a Ph.D. in Chemical Engineering from Amirkabir University of Technology in Tehran in 1997. His doctoral research focused on mathematical modeling and aspects of ZSM‑5 zeolite crystallization—an area crucial for catalysis and material science applications. During his Ph.D., he was selected for an exchange opportunity, spending one year (1995–1996) at ETH Zurich’s Zeolite Group within the Laboratory of Crystallography. This international exposure enriched his understanding of crystallographic methods and international research collaboration. During his tenure at ETH, he contributed to advanced studies on zeolite structure and synthesis. Upon returning to Tehran, he completed his Ph.D. and applied these insights in both academic and industrial settings. This educational trajectory blends rigorous theoretical training with practical, hands-on experience at a world-renowned institution, preparing him for a career spanning modeling, materials, and nanotechnologies.

Professional Experience

Prof. Falamaki’s academic trajectory spans from Assistant Professor in 1997 to Full Professor since 2016, reflecting over two decades of sustained contributions. Between 1997 and 2006, he served as Assistant Professor in the Ceramics Department at the Materials and Energy Research Center (MERC), Iran’s Ministry of Science, Research, and Technology. He was promoted to Associate Professor in 2006–2007 at MERC before transitioning to the Department of Chemical Engineering at AUT from 2007 onward. At AUT, he served as Associate Professor from 2007 until achieving Full Professor status in 2016. In these roles, he taught courses in crystallization theory, catalytic processes, zeolite synthesis, water treatment, nano‑materials, and membrane science at undergraduate and graduate levels. His earlier experiences at MERC also included managing ceramic processing and research teams and heading departments, which honed his leadership. He has successfully headed numerous research projects—spanning zeolite catalysts, membranes, water desalination, wastewater treatment, and CO₂ conversion—underscoring his integration of academia and industry. His progression highlights a balance of instructional expertise, laboratory leadership, and impactful applied research.

Research Interests

Prof. Falamaki’s research concentrates on catalyst development, membrane technology, nano-material synthesis, and environmental applications. His primary interests include mathematical and molecular modeling of crystallization processes, zeolite synthesis (especially ZSM‑5 and clinoptilolite), and catalytic systems for petrochemicals such as xylene isomerization and propane-SCR of NOx emissions. He also explores green synthesis routes—e.g., graphene oxide composites, gold nanoparticle production in microfluidic reactors—and catalysis for CO oxidation, methanol synthesis from CO₂, and selective separations like p-xylene molecular sieves. Another major thrust is advanced membranes: ceramic nano-filtration, sintered membrane reactors for oxidative coupling, and micro-supercapacitors, targeting water desalination or pollutant removal. His strong interest in sustainable and green chemical processes is exemplified through studies on bio-polymers for ion sequestration, water desalination via hydrates, and pollutant removal. Together, these highlight his cross-disciplinary approach—melding chemical engineering, materials science, nanotechnology, and environmental applications.

Research Skills

Prof. Falamaki possesses a rich suite of research skills spanning theoretical modeling, materials synthesis, catalysis, nano- and micro-fabrication, and analytical evaluation. He excels in mathematical and molecular modeling—particularly in crystallization kinetics and thermodynamics—and is adept with DFT simulations, molecular dynamics, and adsorption modeling. His lab expertise encompasses synthesizing zeolites, gold nanoparticles via microfluidic reactors, graphene composites, ceramic membranes, and nano-structured oxides. He has hands-on experience with pilot- and lab-scale reactor design, sintering methods, microwave-assisted processing, and membrane fabrication. Analytical skills include techniques like BET surface analysis, SPR sensors, resistive pulse sensing, electrode/electrochemical performance testing, and adsorption/desorption kinetics. Combined with his strength in green process development—like catalytic CO₂ hydrogenation, propane-SCR, and capacitive deionization—he demonstrates a comprehensive toolkit bridging theory to industrial application.

Awards and Honors

Prof. Falamaki’s contributions have been recognized by multiple awards at national and international levels. In 2013, he received recognition among the Top Three Products at Iran’s Biotech 2013 Festival, awarded by the Iranian Biotechnology Development Initiative under the Presidency. In 2011, he earned a Silver Award at the Cyber International Genius Inventor Fair in Seoul, South Korea, for an innovative invention. Earlier accolades include his selection as one of the Top Ten National Researchers in Nanotechnology by the Iranian Nanotechnology Initiative in 2007, and recognition as a Distinguished Researcher at MERC in 2006. These honors highlight his impact spanning biotechnology, invention, and nanotechnology, underscoring his innovative spirit and leadership in interdisciplinary science.

Conclusion

Prof. Cavus Falamaki is an accomplished academic whose career integrates advanced research, teaching, and leadership, anchored in his doctoral expertise in zeolite crystallization. His international exposure at ETH Zurich, extensive publication record, and decades of service at AUT and MERC reflect both depth and breadth. With a strong emphasis on catalysis, nano-materials, membranes, and environmental technologies, his work spans fundamental modeling to pilot-scale implementation. Recognized with several awards—including national honors in biotech and nanotechnology and global invention awards—his influence is both local and international. As a professor, researcher, and mentor, Prof. Falamaki embodies a commitment to innovation, sustainability, and interdisciplinary inquiry.

Publications Top Notes

  1. Title: Gold nanoparticles green production using diethyl carbonate as continuum phase in a dripping regime microfluidic reactor
    Year: 2025

  2. Title: Adsorption of asphaltene molecules on functionalized SiO₂ nanoparticles at atmospheric and high pressures in heptane/toluene environment: A molecular dynamics simulation study
    Year: 2024
    Citations: 2

  3. Title: Casein/starch composites: novel binders for green carbonaceous electrodes applied in the capacitive deionization of water
    Year: 2023
    Citations: 5

  4. Title: Mass transfer analysis of the isochoric–isotherm hydrate-based water desalination from CO₂/C₃H₈ gas mixtures
    Year: 2023

  5. Title: Nanoparticle Tracking Analysis: Enhanced Detection of Transparent Materials
    Year: 2023
    Citations: 3

  6. Title: Modified BET theory for actual surfaces: implementation of surface curvature
    Year: 2023
    Citations: 2

  7. Title: A comprehensive study of intravenous iron-carbohydrate nanomedicines: From synthesis methodology to physicochemical and pharmaceutical characterization
    Citations: 1

  8. Title: 3D Graphene for Capacitive De-ionization of Water
    Citations: 1

  9. Title: Applying a new approach to predict the residence time distribution in impinging streams reactors
    Year: 2023
    Citations: 3

 

Yeye Ai | Material Science | Best Researcher Award

Dr. Yeye Ai | Material Science | Best Researcher Award

Lecturer at Hangzhou Normal University, China

Dr. Yeye Ai is a dedicated and innovative researcher currently serving as a Lecturer at the College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. With a strong foundation in functional metal-organic complexes, Dr. Ai has built a distinguished academic and research career characterized by creativity, perseverance, and impact. She obtained her Ph.D. from Sun Yat-Sen University in 2020 under the guidance of the esteemed Prof. Vivian Wing-Wah Yam. Her early academic excellence and passion for research led to a Research Associate position at the University of Hong Kong in Prof. Yam’s group from June to December 2018. Dr. Ai’s primary research interests include the design and synthesis of multi-stimuli responsive materials and optical switches, where her work contributes significantly to optical visualization and sensing applications. She has published over 20 peer-reviewed articles, holds several patents, and actively engages in collaborative projects such as the Hangzhou Leading Innovation and Entrepreneurship Team initiative. As a Guest Editor for the journal Polymers and a member of the Chinese Chemical Society since 2015, Dr. Ai maintains active engagement in the scientific community. Her profile reflects a blend of academic rigor, research excellence, and a commitment to innovation in chemical sciences.

Professional Profiles

Education

Dr. Yeye Ai’s academic journey reflects a strong commitment to excellence in chemistry and materials science. She earned her Ph.D. from the prestigious Sun Yat-Sen University in 2020, where she studied under the mentorship of renowned chemist Prof. Vivian Wing-Wah Yam. Her doctoral research focused on the synthesis and application of functional metal-organic complexes for use in optical visualization and stimuli-responsive systems, an area in which she continues to innovate. During her Ph.D. studies, Dr. Ai gained international experience by working as a Research Associate in Prof. Yam’s laboratory at the University of Hong Kong from June to December 2018. This experience significantly broadened her exposure to advanced research methodologies and international collaboration. The combination of rigorous academic training and exposure to leading research environments provided her with a solid foundation for her current research. Her academic work is characterized by interdisciplinary thinking, integrating concepts from chemistry, material science, and photophysics. Dr. Ai continues to build on this strong educational background in her current role as a Lecturer, mentoring students and pursuing advanced research in optical materials. Her education has been instrumental in shaping her into a forward-thinking scientist committed to contributing meaningfully to the field of chemical research.

Professional Experience

Dr. Yeye Ai brings a diverse and accomplished background in academic and research settings to her current position as Lecturer at the College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. Since joining the institution, she has contributed extensively to both teaching and research, guiding students through complex chemical concepts while also leading independent research projects in optical sensing and visualization. Her academic career began with a significant research position as a Research Associate in Prof. Vivian Wing-Wah Yam’s laboratory at the University of Hong Kong in 2018. This role enabled her to engage in high-impact research and collaborate with leading scientists in the field of photofunctional materials. In her current role, Dr. Ai has led three major research projects and has collaborated on an industry consultancy initiative, highlighting her ability to bridge academic knowledge with real-world applications. She has published 22 SCI-indexed journal articles, authored a book, and holds six patents either granted or under review. Additionally, her editorial work as a Guest Editor for Polymers reflects her growing influence in the academic community. Her commitment to mentorship, research excellence, and innovation underscores her valuable contributions to the academic and scientific landscapes.

Research Interest

Dr. Yeye Ai’s research centers on the development and application of optical switches and multi-stimuli responsive materials, with a particular focus on the rational design of metal-organic complexes and spiropyran-derived photoswitches. Her work aims to understand and manipulate materials that exhibit reversible changes in optical properties when subjected to external stimuli such as light, pH, or temperature. This includes designing systems that can serve as sensors, memory devices, or encryption platforms through dynamic supramolecular assemblies. A key highlight of her research is the development of triplet-sensitized photochromic switches, which exhibit enhanced photostability and fatigue resistance—an innovation that addresses longstanding challenges in optical materials science. Her research also explores the visualization of molecular motion, advancing the fundamental understanding of dynamic behavior in responsive materials. Dr. Ai’s work is highly interdisciplinary, integrating chemistry, materials science, and photophysics, and aims to deliver both theoretical insights and practical applications. Through her collaboration with the Hangzhou Leading Innovation and Entrepreneurship Team project and her active membership in the Chinese Chemical Society, she contributes to pushing the boundaries of material functionality and optical technologies. Her vision is to harness responsive materials for smarter, more efficient technological systems in imaging, sensing, and information storage.

Research Skills

Dr. Yeye Ai possesses a robust and versatile skill set that underpins her research excellence in the fields of materials chemistry and photofunctional systems. Her expertise lies in the synthesis and structural characterization of metal-organic complexes and multi-responsive molecular assemblies. She is proficient in using a broad spectrum of analytical tools such as NMR spectroscopy, UV-Vis absorption and emission spectroscopy, and X-ray crystallography to study the physicochemical behavior of functional materials. Additionally, her work frequently involves photophysical investigations, including time-resolved spectroscopy and studies of triplet-sensitized photochromism, which are crucial for evaluating the performance and stability of optical switches. Dr. Ai also demonstrates strong skills in molecular design and supramolecular chemistry, allowing her to engineer stimuli-responsive behaviors into spiropyran derivatives and other chromophoric systems. Her ability to integrate synthetic chemistry with advanced optical analysis supports her development of innovative sensing platforms and visualization tools. She has also authored a book and contributed to over 20 publications in top-tier journals, which reflects her capabilities in scientific writing and data interpretation. Her experience in patent filing and collaborative projects further highlights her practical understanding of translational research. These skills make her a valuable contributor to cutting-edge developments in chemical materials science.

Awards and Honors

Dr. Yeye Ai’s promising academic trajectory and impactful research have earned her notable recognition within the scientific community. Although early in her independent academic career, her accomplishments in the development of optical switches and stimuli-responsive materials have already positioned her as a leader in this niche area of materials science. Her published book, recognized by its ISBN (978-9811068812), reflects her ability to contribute to educational and technical literature. With a citation h-index of 11, she has demonstrated consistent scholarly influence through her 22 peer-reviewed publications, many of which appear in reputable SCI-indexed journals. Furthermore, she has successfully secured six patents, which highlights the originality and application potential of her work. Dr. Ai also holds the role of Guest Editor for the journal Polymers, a recognition of her academic standing and editorial capabilities. Her selection for collaboration in the Hangzhou Leading Innovation and Entrepreneurship Team Project underscores the real-world relevance and industrial potential of her research. She is a long-standing member of the Chinese Chemical Society (CCS) since 2015, further reflecting her professional engagement in the field. As a candidate for the Best Researcher Award, Dr. Ai exemplifies the criteria of innovation, productivity, and dedication to scientific advancement.

Conclusion

Dr. Yeye Ai exemplifies the profile of a forward-thinking academic who seamlessly blends scientific innovation with practical application. With a solid academic foundation rooted in her doctoral studies under Prof. Vivian Wing-Wah Yam, she has emerged as a promising leader in the development of functional materials and optical technologies. Her independent research, focusing on multi-stimuli responsive materials and optical switches, not only contributes to the advancement of material sciences but also holds significant promise for real-world applications in sensing, imaging, and information technology. Dr. Ai’s professional journey is marked by academic rigor, international collaboration, and a proactive engagement in interdisciplinary research. Her contributions—spanning publications, patents, editorial duties, and innovation projects—demonstrate a commitment to both the scientific community and society at large. In her role as a Lecturer at Hangzhou Normal University, she continues to inspire the next generation of scientists while pushing the boundaries of chemical research. As she looks toward further academic and professional accomplishments, Dr. Ai remains committed to solving complex challenges through intelligent material design and functional innovation. Her career stands as a testament to dedication, creativity, and the pursuit of scientific excellence.

 Publications Top Notes

1. Title: A stereodynamic probe of Pt(II) molecular hinge for chiroptical sensing of cryptochiral compounds

Authors: Yeye Ai, Yinghao Zhang, Ying Jiang, Guilin Zhuang, Yongguang Li

Year: 2025

Citations: 1

2. Title: ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes

Authors: Zhu Shu, Xin Lei, Yeye Ai, Zhegang Huang, Yongguang Li

Citations: 7