Yeye Ai | Material Science | Best Researcher Award

Dr. Yeye Ai | Material Science | Best Researcher Award

Lecturer at Hangzhou Normal University, China

Dr. Yeye Ai is a dedicated and innovative researcher currently serving as a Lecturer at the College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. With a strong foundation in functional metal-organic complexes, Dr. Ai has built a distinguished academic and research career characterized by creativity, perseverance, and impact. She obtained her Ph.D. from Sun Yat-Sen University in 2020 under the guidance of the esteemed Prof. Vivian Wing-Wah Yam. Her early academic excellence and passion for research led to a Research Associate position at the University of Hong Kong in Prof. Yam’s group from June to December 2018. Dr. Ai’s primary research interests include the design and synthesis of multi-stimuli responsive materials and optical switches, where her work contributes significantly to optical visualization and sensing applications. She has published over 20 peer-reviewed articles, holds several patents, and actively engages in collaborative projects such as the Hangzhou Leading Innovation and Entrepreneurship Team initiative. As a Guest Editor for the journal Polymers and a member of the Chinese Chemical Society since 2015, Dr. Ai maintains active engagement in the scientific community. Her profile reflects a blend of academic rigor, research excellence, and a commitment to innovation in chemical sciences.

Professional Profiles

Education

Dr. Yeye Ai’s academic journey reflects a strong commitment to excellence in chemistry and materials science. She earned her Ph.D. from the prestigious Sun Yat-Sen University in 2020, where she studied under the mentorship of renowned chemist Prof. Vivian Wing-Wah Yam. Her doctoral research focused on the synthesis and application of functional metal-organic complexes for use in optical visualization and stimuli-responsive systems, an area in which she continues to innovate. During her Ph.D. studies, Dr. Ai gained international experience by working as a Research Associate in Prof. Yam’s laboratory at the University of Hong Kong from June to December 2018. This experience significantly broadened her exposure to advanced research methodologies and international collaboration. The combination of rigorous academic training and exposure to leading research environments provided her with a solid foundation for her current research. Her academic work is characterized by interdisciplinary thinking, integrating concepts from chemistry, material science, and photophysics. Dr. Ai continues to build on this strong educational background in her current role as a Lecturer, mentoring students and pursuing advanced research in optical materials. Her education has been instrumental in shaping her into a forward-thinking scientist committed to contributing meaningfully to the field of chemical research.

Professional Experience

Dr. Yeye Ai brings a diverse and accomplished background in academic and research settings to her current position as Lecturer at the College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. Since joining the institution, she has contributed extensively to both teaching and research, guiding students through complex chemical concepts while also leading independent research projects in optical sensing and visualization. Her academic career began with a significant research position as a Research Associate in Prof. Vivian Wing-Wah Yam’s laboratory at the University of Hong Kong in 2018. This role enabled her to engage in high-impact research and collaborate with leading scientists in the field of photofunctional materials. In her current role, Dr. Ai has led three major research projects and has collaborated on an industry consultancy initiative, highlighting her ability to bridge academic knowledge with real-world applications. She has published 22 SCI-indexed journal articles, authored a book, and holds six patents either granted or under review. Additionally, her editorial work as a Guest Editor for Polymers reflects her growing influence in the academic community. Her commitment to mentorship, research excellence, and innovation underscores her valuable contributions to the academic and scientific landscapes.

Research Interest

Dr. Yeye Ai’s research centers on the development and application of optical switches and multi-stimuli responsive materials, with a particular focus on the rational design of metal-organic complexes and spiropyran-derived photoswitches. Her work aims to understand and manipulate materials that exhibit reversible changes in optical properties when subjected to external stimuli such as light, pH, or temperature. This includes designing systems that can serve as sensors, memory devices, or encryption platforms through dynamic supramolecular assemblies. A key highlight of her research is the development of triplet-sensitized photochromic switches, which exhibit enhanced photostability and fatigue resistance—an innovation that addresses longstanding challenges in optical materials science. Her research also explores the visualization of molecular motion, advancing the fundamental understanding of dynamic behavior in responsive materials. Dr. Ai’s work is highly interdisciplinary, integrating chemistry, materials science, and photophysics, and aims to deliver both theoretical insights and practical applications. Through her collaboration with the Hangzhou Leading Innovation and Entrepreneurship Team project and her active membership in the Chinese Chemical Society, she contributes to pushing the boundaries of material functionality and optical technologies. Her vision is to harness responsive materials for smarter, more efficient technological systems in imaging, sensing, and information storage.

Research Skills

Dr. Yeye Ai possesses a robust and versatile skill set that underpins her research excellence in the fields of materials chemistry and photofunctional systems. Her expertise lies in the synthesis and structural characterization of metal-organic complexes and multi-responsive molecular assemblies. She is proficient in using a broad spectrum of analytical tools such as NMR spectroscopy, UV-Vis absorption and emission spectroscopy, and X-ray crystallography to study the physicochemical behavior of functional materials. Additionally, her work frequently involves photophysical investigations, including time-resolved spectroscopy and studies of triplet-sensitized photochromism, which are crucial for evaluating the performance and stability of optical switches. Dr. Ai also demonstrates strong skills in molecular design and supramolecular chemistry, allowing her to engineer stimuli-responsive behaviors into spiropyran derivatives and other chromophoric systems. Her ability to integrate synthetic chemistry with advanced optical analysis supports her development of innovative sensing platforms and visualization tools. She has also authored a book and contributed to over 20 publications in top-tier journals, which reflects her capabilities in scientific writing and data interpretation. Her experience in patent filing and collaborative projects further highlights her practical understanding of translational research. These skills make her a valuable contributor to cutting-edge developments in chemical materials science.

Awards and Honors

Dr. Yeye Ai’s promising academic trajectory and impactful research have earned her notable recognition within the scientific community. Although early in her independent academic career, her accomplishments in the development of optical switches and stimuli-responsive materials have already positioned her as a leader in this niche area of materials science. Her published book, recognized by its ISBN (978-9811068812), reflects her ability to contribute to educational and technical literature. With a citation h-index of 11, she has demonstrated consistent scholarly influence through her 22 peer-reviewed publications, many of which appear in reputable SCI-indexed journals. Furthermore, she has successfully secured six patents, which highlights the originality and application potential of her work. Dr. Ai also holds the role of Guest Editor for the journal Polymers, a recognition of her academic standing and editorial capabilities. Her selection for collaboration in the Hangzhou Leading Innovation and Entrepreneurship Team Project underscores the real-world relevance and industrial potential of her research. She is a long-standing member of the Chinese Chemical Society (CCS) since 2015, further reflecting her professional engagement in the field. As a candidate for the Best Researcher Award, Dr. Ai exemplifies the criteria of innovation, productivity, and dedication to scientific advancement.

Conclusion

Dr. Yeye Ai exemplifies the profile of a forward-thinking academic who seamlessly blends scientific innovation with practical application. With a solid academic foundation rooted in her doctoral studies under Prof. Vivian Wing-Wah Yam, she has emerged as a promising leader in the development of functional materials and optical technologies. Her independent research, focusing on multi-stimuli responsive materials and optical switches, not only contributes to the advancement of material sciences but also holds significant promise for real-world applications in sensing, imaging, and information technology. Dr. Ai’s professional journey is marked by academic rigor, international collaboration, and a proactive engagement in interdisciplinary research. Her contributions—spanning publications, patents, editorial duties, and innovation projects—demonstrate a commitment to both the scientific community and society at large. In her role as a Lecturer at Hangzhou Normal University, she continues to inspire the next generation of scientists while pushing the boundaries of chemical research. As she looks toward further academic and professional accomplishments, Dr. Ai remains committed to solving complex challenges through intelligent material design and functional innovation. Her career stands as a testament to dedication, creativity, and the pursuit of scientific excellence.

 Publications Top Notes

1. Title: A stereodynamic probe of Pt(II) molecular hinge for chiroptical sensing of cryptochiral compounds

Authors: Yeye Ai, Yinghao Zhang, Ying Jiang, Guilin Zhuang, Yongguang Li

Year: 2025

Citations: 1

2. Title: ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes

Authors: Zhu Shu, Xin Lei, Yeye Ai, Zhegang Huang, Yongguang Li

Citations: 7

Yi Lu | Material Science | Best Researcher Award

Dr. Yi Lu | Material Science | Best Researcher Award

Beijing University of Technology, China

Dr. Yi Lu is a dedicated researcher and academic at the School of Materials Science and Engineering, Beijing University of Technology. With a strong focus on aluminum alloys, Dr. Lu has developed a deep expertise in understanding the intricate relationship between their mechanical properties and microstructure. Over the course of her academic journey, she has been actively involved in a national key research and development project, contributing significantly to the advancement of materials science in China. Dr. Lu has authored multiple peer-reviewed journal articles, including four SCI-indexed papers, two of which are published in top-tier SCI1 journals. Her research outputs have garnered six citations to date, reflecting the growing relevance of her work in the scientific community. She has also established international research collaboration with the University of Auckland, further enhancing the global dimension of her academic contributions. Although early in her career, Dr. Lu’s commitment to innovation and excellence positions her as a promising figure in the field. Her work encompasses both theoretical and applied aspects of materials science, with special attention to corrosion behavior, hydrogen embrittlement, and refining processes in aluminum alloys. Driven by a passion for discovery, Dr. Lu continues to push the boundaries of research and make meaningful contributions to her field.

Professional Profiles

Education

Dr. Yi Lu pursued her academic training in materials science with a strong emphasis on metal research, particularly aluminum alloys. She earned her advanced degrees from reputable institutions that laid a strong foundation for her scientific pursuits. Throughout her studies, she demonstrated exceptional analytical and experimental skills, which were honed through hands-on laboratory work and advanced coursework in metallurgy, corrosion science, mechanical behavior of materials, and materials processing. Her educational journey emphasized the integration of theoretical knowledge with experimental application, preparing her to explore complex research topics such as microstructural characterization and failure mechanisms in metals. During her graduate studies, she was actively involved in collaborative research, presenting her work at seminars and contributing to peer-reviewed publications. These academic experiences sharpened her ability to approach scientific challenges methodically and rigorously. Her thesis focused on understanding the influence of microstructure on the mechanical and corrosion properties of aluminum alloys, a subject that continues to underpin her current research. The depth of her education, coupled with her persistent curiosity and discipline, has equipped Dr. Lu with the tools necessary to make substantial contributions in the field of materials science. Her academic background continues to serve as a vital pillar supporting her professional research and innovation.

Professional Experience

Currently serving as a researcher at the School of Materials Science and Engineering, Beijing University of Technology, Dr. Yi Lu plays a crucial role in advancing the institution’s research capabilities in metallic materials. Her professional work is centered around aluminum alloys, exploring key issues related to their mechanical properties, corrosion behavior, and hydrogen embrittlement mechanisms. Dr. Lu has been a vital team member in a national key research and development project, where she contributed to the experimental design, materials testing, and analysis of microstructural transformations. This project offered her a platform to apply her academic knowledge to real-world problems, bridging the gap between theory and industrial application. She has also authored several SCI-indexed journal articles, establishing her as a published researcher with international reach. Her professional collaborations extend beyond China, as evidenced by her research partnership with the University of Auckland. These experiences have strengthened her ability to work in cross-cultural, interdisciplinary teams and have enriched her understanding of global research dynamics. While Dr. Lu has not yet engaged in consultancy or industry-specific projects, her academic and project-based experience positions her well for future involvement in industrial research, particularly in sectors where material durability and performance are critical.

Research Interest

Dr. Yi Lu’s research interests lie at the intersection of materials science and engineering, with a strong focus on the behavior and performance of aluminum alloys. Her primary areas of investigation include the mechanical properties of aluminum alloys and how these are influenced by microstructural features. She is particularly intrigued by the factors that govern the corrosion resistance of these materials, an issue of critical importance in industries such as aerospace, automotive, and construction. Dr. Lu also explores various refining techniques to enhance the purity and structural uniformity of aluminum alloys. One of the more specialized aspects of her work is the study of hydrogen embrittlement—an often overlooked but significant phenomenon that compromises the integrity of metals. Through her research, she seeks to understand the mechanisms behind hydrogen-induced failures and propose mitigation strategies. These interconnected areas form a cohesive framework that allows Dr. Lu to address both fundamental questions and practical challenges in materials performance. Her interests are not only driven by academic curiosity but also by the broader societal need for more resilient, lightweight, and corrosion-resistant materials. By focusing her research on these critical topics, she aims to contribute to the development of next-generation metallic materials with enhanced longevity and reliability.

Research Skills

Dr. Yi Lu possesses a robust set of research skills that enable her to tackle complex problems in materials science with precision and innovation. She is proficient in a wide range of experimental techniques used to analyze the mechanical and corrosion behavior of metals, particularly aluminum alloys. Her expertise includes mechanical testing methods such as tensile, hardness, and fatigue analysis, which she uses to assess the structural integrity of alloys. In addition, she is skilled in metallographic examination and advanced microscopy, including scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), allowing her to investigate microstructural features at fine resolutions. Dr. Lu is also experienced in electrochemical testing methods, which are essential for understanding corrosion kinetics and resistance. Her analytical skills extend to data interpretation and modeling, ensuring that experimental findings are rigorously evaluated and contextually grounded. Furthermore, she demonstrates competence in scientific writing and has successfully published in high-impact SCI journals. Her collaborative research experience with the University of Auckland highlights her ability to contribute to international projects and interdisciplinary teams. Whether conducting experiments, interpreting results, or drafting manuscripts, Dr. Lu consistently applies scientific rigor and attention to detail, making her a capable and well-rounded researcher in her field.

Awards and Honors

Although Dr. Yi Lu is in the early stages of her academic and research career, she has already achieved notable recognition for her contributions to materials science. Her most significant honor to date is her participation in a national key research and development project, a competitive and prestigious initiative that selects promising researchers to contribute to groundbreaking scientific work. In this project, Dr. Lu’s role was instrumental in generating valuable findings related to aluminum alloy performance. She has published four SCI-indexed papers and one EI paper, with two articles appearing in high-impact SCI1 journals—an accomplishment that reflects both the quality and relevance of her research. Her work has received six citations, an encouraging indicator of her growing impact within the academic community. Dr. Lu has also been nominated for the Best Researcher Award, a testament to her dedication and early academic promise. These accolades, while still accumulating, signify her upward trajectory in the field. As she continues to publish, collaborate, and contribute to material science research, Dr. Lu is poised to garner more awards and recognition. Her commitment to excellence and innovation lays the groundwork for future honors at both national and international levels.

Conclusion

Dr. Yi Lu exemplifies the qualities of a dedicated and forward-thinking researcher in the field of materials science and engineering. Her academic journey and professional work are unified by a clear focus on improving the performance and durability of aluminum alloys, which are critical to a wide range of industrial applications. Through rigorous experimentation, international collaboration, and scholarly publication, she has demonstrated the ability to contribute meaningful insights to her discipline. Her areas of expertise—including mechanical behavior, corrosion mechanisms, refining methods, and hydrogen embrittlement—address some of the most pressing challenges in metallic materials. Despite being at an early stage in her career, Dr. Lu’s accomplishments—such as participation in a national research initiative and publications in high-tier journals—highlight her potential for future leadership in research and innovation. She continues to refine her experimental techniques, expand her scientific understanding, and seek impactful collaborations. Looking ahead, Dr. Lu aims to further integrate her theoretical knowledge with practical applications, ultimately contributing to the design and development of materials that are stronger, lighter, and more resistant to environmental stress. Her dedication to scientific progress and her methodical approach to research ensure that she will remain a valuable asset to her institution and the global materials science community.

 Publications Top Notes

  1. Title: High thermal stability of Si-containing Al-Zn-Mg-Cu crossover alloy caused by metastable GPB-II phase
    Authors: Yi Lu, Shengping Wen, Wu Wei, Xiaolan Wu, Kunyuan Gao, Hui Huang, Zuoren Nie
    Year: 2025

  2. Title: The enhanced aging hardening behavior in Si-containing Al-5Zn-1Mg-1Cu alloys
    Authors: Yi Lu, Shengping Wen, Zuoren Nie
    Year: 2024

  3. Title: The phase transformation and enhancing mechanical properties in high Zn/Mg ratio Al–Zn–Mg–Cu(-Si) alloys
    Authors: Yi Lu, Shengping Wen, Kunyuan Gao, Xiangyuan Xiong, Wu Wei, Xiaolan Wu, Hui Huang, Zuoren Nie
    Year: 2024

  4. Title: TeleAware Robot: Designing Awareness-augmented Telepresence Robot for Remote Collaborative Locomotion
    Authors: Ruyi Li, Yaxin Zhu, Min Liu, Yihang Zeng, Shanning Zhuang, Jiayi Fu, Yi Lu, Guyue Zhou, Can Liu, Jiangtao Gong
    Year: 2024