Nidhi Chandrakar | Emerging Technologies | Applied Scientist Award

Ms. Nidhi Chandrakar | Emerging Technologies | Applied Scientist Award

Nidhi Chandrakar at NIT Trichy | India

Nidhi Chandrakar is a passionate and highly motivated researcher with expertise in power electronics, converter topologies, and advanced control strategies. Her work focuses on the development of high-efficiency energy conversion systems and smart power solutions for various applications, including electric vehicles, renewable energy integration, and intelligent energy storage systems. She has an exceptional ability to combine theoretical knowledge with practical implementation, demonstrated through her extensive experience in hardware design, circuit simulation, and system optimization. Nidhi has contributed to multiple high-impact research projects, including the design of Dual Active Bridge (DAB) converters and the implementation of innovative modulation strategies for improving performance and efficiency. She has published her research findings in reputed international journals and has presented her work at several prestigious conferences. In addition, she has co-authored book chapters on emerging electric vehicle technologies and hybrid energy systems, reflecting her versatility and technical proficiency. Nidhi’s strong analytical skills, collaborative mindset, and innovative approach position her as a dedicated researcher committed to driving advancements in sustainable power systems and next-generation energy solutions.

Professional Profile

Scopus | ORCID

Education

Nidhi Chandrakar has built a solid academic foundation in electrical engineering, power systems, and energy technologies. She is currently pursuing advanced research focused on power electronics and control strategies, particularly the optimization of high-performance DC-DC converters. Her academic journey has been defined by her deep interest in converter topologies, modulation techniques, and energy-efficient system designs. Throughout her studies, she has explored hardware implementation, simulation modeling, and algorithm development to bridge the gap between theory and real-world applications. She has consistently demonstrated strong academic performance, excelling in both analytical and experimental aspects of electrical engineering. Nidhi’s research training has provided her with practical exposure to modern control systems, FPGA programming, and microcontroller-based hardware development. Her academic experiences also include collaborative projects, interdisciplinary research, and active participation in workshops and seminars, which have strengthened her understanding of emerging technologies. By integrating advanced concepts of power electronics, renewable energy systems, and intelligent control, Nidhi has developed a holistic perspective on modern engineering challenges. Her educational background has shaped her into a skilled researcher with a passion for exploring innovative solutions in sustainable energy systems and cutting-edge power conversion technologies.

Professional Experience

Nidhi Chandrakar has gained valuable professional experience through diverse roles in research, development, and teaching. She is currently contributing as a Senior R&D Engineer, where she works on the design and development of electronic load systems used for testing power supplies, batteries, and advanced energy systems. Her role involves hardware design, circuit optimization, testing, and troubleshooting, enabling her to develop efficient and reliable systems. Previously, she worked as an R&D Engineer, where she focused on Boost PFC circuits, LLC resonant converters, and Dual Active Bridge (DAB) converters. During this period, she played a key role in developing gate driver circuits, isolated regulated power supplies, and advanced PCB layouts. In addition to her industrial contributions, Nidhi has served as a Teaching Assistant, supporting academic courses in Digital System Design and HDL programming, and has also worked as a Residential Student Counselor, mentoring students and assisting in administrative responsibilities. Through these experiences, she has developed strong problem-solving abilities and gained practical exposure to power system optimization, simulation tools, and microcontroller-based hardware development. Her professional journey demonstrates a balanced expertise in both academic research and industry-driven innovation.

Research Interests

Nidhi Chandrakar’s research interests focus on power electronics, energy conversion, and intelligent control strategies. She is particularly interested in the development of high-efficiency DC-DC converters, with a specialization in Dual Active Bridge (DAB) topologies and their applications in electric vehicle systems. Her current work involves optimizing converter performance through innovative approaches to current stress reduction and circulating current minimization, ensuring improved system reliability and energy efficiency. Nidhi is also passionate about renewable energy integration, smart grids, and energy storage technologies, with a strong focus on improving the interaction between distributed energy resources and power electronics systems. She has explored pulse-width modulation (PWM) and phase-shift modulation (PSM) techniques to enhance converter efficiency, supported by both simulation and experimental validation. Beyond power converters, her interests extend to real-time control systems, hardware-in-the-loop (HIL) testing, and embedded systems development for sustainable energy applications. Nidhi seeks to contribute to innovative research addressing global energy challenges by designing scalable, cost-effective, and environmentally friendly solutions. Her long-term goal is to advance the field of power electronics by bridging the gap between theoretical research and practical implementation in smart energy systems.

Research Skills

Nidhi Chandrakar possesses strong technical, analytical, and experimental skills that complement her research expertise in power electronics and control systems. She is proficient in Verilog coding and FPGA-based digital system design, enabling her to implement high-performance hardware prototypes. She has extensive experience working with Texas Instruments C2000 microcontrollers, particularly the F28379D series, for real-time control applications and advanced converter optimization. Nidhi is skilled in using MATLAB and PLECS simulation software for system modeling, analysis, and performance evaluation of power electronics systems. Her technical capabilities also include gate driver circuit design, isolated regulated power supply development, and PCB layout optimization, allowing her to translate complex concepts into functional designs. Additionally, she is proficient in programming languages such as C, C++, and Python, which she uses for developing algorithms, simulations, and embedded control solutions. Nidhi has hands-on expertise in soldering, hardware testing, troubleshooting, and validating control strategies for experimental setups. She also demonstrates strong abilities in technical documentation, academic writing, and presenting research findings at international conferences. Her diverse skill set empowers her to conduct impactful research and develop innovative, high-efficiency power solutions for emerging technologies.

Awards and Honors

Nidhi Chandrakar has been recognized for her research contributions, academic excellence, and technical expertise in the field of power electronics. She has co-authored several highly cited publications in leading international journals, where her research on current stress mitigation and circulating current reduction strategies in Dual Active Bridge converters has been well-appreciated. Nidhi has also presented her work at prestigious international conferences, where her innovative approaches to converter control and optimization have received positive recognition from the scientific community. Her contributions to book chapters published by Springer and Academic Press highlight her growing influence in the areas of electric vehicle technologies, hybrid energy systems, and renewable energy applications. In addition to her academic achievements, she has consistently maintained an outstanding record of performance throughout her studies, earning appreciation for her dedication, hard work, and technical innovation. Nidhi’s research outputs demonstrate her ability to produce impactful solutions to real-world engineering challenges. These honors reflect her strong commitment to advancing sustainable energy technologies and her potential to contribute significantly to the development of next-generation power electronics systems.

Publications Top Notes

Title: Efficient Control Strategy for Circulating Current Minimization in Dual Active Bridge Applications
Year: 2025

Conclusion

In conclusion, Nidhi Chandrakar is a highly driven researcher, engineer, and innovator with a strong focus on power electronics, converter design, and sustainable energy systems. Her academic background, professional experience, and hands-on expertise in hardware design, control strategies, and energy optimization have shaped her into a well-rounded contributor to both research and industry. Through her publications, conference presentations, and collaborative projects, she has demonstrated a deep understanding of converter technologies and renewable energy integration, positioning her as an emerging expert in her field. Nidhi strives to bridge the gap between theoretical research and practical implementation, aiming to develop efficient, reliable, and cost-effective power solutions that address global energy challenges. Her commitment to innovation, sustainability, and knowledge sharing underscores her long-term vision of contributing to advancements in electric vehicle systems, renewable power integration, and intelligent energy storage technologies. With her passion, determination, and strong technical foundation, Nidhi is well-prepared to make a meaningful impact in the evolving landscape of modern power electronics.