Yihong Li | Material Science | Best Researcher Award

Prof. Yihong Li | Material Science | Best Researcher Award

Outstanding Master Supervisor at Taiyuan University of Science and Technology, China 

Dr. Yihong Li is a highly accomplished professor in Metallurgical Engineering at Taiyuan University of Science and Technology, with a distinguished career dedicated to high-quality steel purification, metallurgical reactor optimization, and the integration of artificial intelligence in metallurgical processes. Born in November 1986, she earned her Ph.D. in Metallurgical Engineering from the University of Science and Technology Beijing. A recipient of numerous accolades, Dr. Li serves as Director of the Metallurgical Engineering Practical Teaching Research Association of the Chinese Society of Education and holds key editorial positions with influential journals such as “China Metallurgy” and “Continuous Casting.” Recognized as an Outstanding Communist Party Member and Xingwo Outstanding Contribution Expert, she exemplifies academic leadership and innovation. She has spearheaded six major provincial and national research projects and led several teaching reform initiatives. With over 30 academic publications, including more than 10 indexed in SCI/EI, seven national invention patents, and a co-authored textbook, her contributions to both research and education are profound. Dr. Li’s commitment to interdisciplinary innovation and academic excellence marks her as a transformative figure in China’s metallurgical field, bridging theoretical exploration with industrial application through collaborative projects and technology transfers.

Professional Profiles

Education 

Dr. Yihong Li’s academic journey reflects a steadfast commitment to metallurgical innovation and academic rigor. She began her formal studies in 2005 at Guizhou University, where she completed her Bachelor’s degree in Metallurgical Engineering in 2009. Demonstrating academic excellence, she was admitted to the University of Science and Technology Beijing, one of China’s foremost institutions in materials science and engineering. There, she pursued her doctoral degree from 2009 to 2015, earning a Ph.D. in Metallurgical Engineering. Her graduate research laid the foundation for her later contributions to high-quality steel purification and reactor process optimization, combining theoretical insight with practical experimentation. Her doctoral dissertation focused on the intricate mechanisms of decarburization and flow behaviors in RH vacuum refining processes, work that has since influenced industrial applications. Throughout her studies, Dr. Li immersed herself in multidisciplinary approaches, drawing from thermodynamics, fluid mechanics, and computational simulation. Her academic path provided both depth in metallurgical science and breadth across engineering problem-solving. This robust educational foundation has been instrumental in enabling her to lead significant research projects and develop innovative teaching models. Dr. Li’s commitment to continuous learning and mentorship is evident through her current role in graduate supervision and curriculum development at Taiyuan University of Science and Technology.

Professional Experience

Dr. Yihong Li’s professional trajectory is marked by a progressive ascent in academic ranks at Taiyuan University of Science and Technology (TYUST). She joined TYUST in January 2015 as a lecturer, shortly after completing her Ph.D., and quickly distinguished herself through her dedication to research and education. Her outstanding performance led to her promotion to Associate Professor in December 2017, and she attained full Professorship in December 2022. In these roles, Dr. Li has contributed extensively to both teaching and institutional development. She has led core undergraduate and postgraduate courses such as “Metallurgical Transmission Principles,” “Advanced Ferrous Metallurgy,” and “Computer Simulation of Metallurgical Processes,” fostering analytical thinking and applied knowledge among students. In parallel, she has assumed significant research responsibilities, acting as Principal Investigator for numerous national and provincial-level projects, including the National Natural Science Foundation and Shanxi Key R&D programs. Her dual commitment to academic excellence and industrial collaboration is evident in her leadership of five school-enterprise projects. As Director of the Metallurgical Engineering Practical Teaching Research Association, she has been instrumental in promoting experiential learning and educational reform. Dr. Li’s blend of research innovation, teaching excellence, and institutional service reflects her holistic approach to professional growth and impact.

Research Interest

Dr. Yihong Li’s research is anchored in advancing the frontiers of Metallurgical Engineering through a triad of core themes: purification of high-quality steel, optimization of metallurgical reactor systems, and the application of artificial intelligence in metallurgical process control. Her passion lies in exploring the underlying physical and chemical phenomena that govern steelmaking, particularly within the context of RH vacuum refining processes. She is deeply engaged in understanding gas-liquid two-phase flow patterns, decarburization mechanisms, and the control of non-metallic inclusions—all of which are crucial for producing ultra-clean steel. Dr. Li also investigates the complex behavior of bubbles and interfacial mass transfer in metallurgical reactors, contributing to the optimization of reactor geometry and operational parameters. In recent years, she has expanded her research into the use of computational fluid dynamics (CFD), data-driven modeling, and AI-based prediction techniques to enhance process stability and quality control. Her interdisciplinary work bridges experimental metallurgy with advanced simulation and intelligent control, promoting innovation that meets modern manufacturing demands. Through collaborations with industry and academia, she strives to develop environmentally sustainable, high-efficiency steel production technologies. Dr. Li’s research not only informs her teaching but also underpins policy and industrial practices in China’s metallurgical landscape.

Research Skills

Dr. Yihong Li possesses a comprehensive skill set that combines deep theoretical expertise with practical technological capabilities in the field of metallurgical engineering. Her core research skills include advanced experimental metallurgy, fluid dynamics simulation, vacuum refining process analysis, and steel inclusion characterization. She is proficient in using computational tools such as ANSYS Fluent, COMSOL Multiphysics, and MATLAB for modeling gas-liquid interactions and heat transfer phenomena in RH vacuum reactors. Additionally, she applies statistical analysis and artificial intelligence techniques—such as neural networks and machine learning algorithms—for process optimization and predictive analytics in steel manufacturing. Dr. Li is adept in metallurgical sample preparation, scanning electron microscopy (SEM), and optical microscopy, enabling her to evaluate microstructures and inclusion morphologies. Her patent-related skills include innovation management, prototype testing, and patent writing, with seven national invention patents either authorized or under commercialization. She is experienced in collaborative research management, from grant writing and funding acquisition to project supervision and academic publishing. Her ability to integrate scientific theory with industrial relevance has made her a trusted partner in both academic and enterprise collaborations. As a seasoned educator and researcher, Dr. Li also excels in curriculum design, postgraduate mentorship, and interdepartmental coordination for joint training programs.

Awards and Honors

Dr. Yihong Li has been the recipient of numerous accolades recognizing her excellence in research, education, and professional service. Notably, she was honored as a Xingwo Outstanding Contribution Expert, a prestigious title awarded for her impactful research in the metallurgical field and her contributions to teaching reform. In 2022, she was named Outstanding Guest Editor for the journal “Continuous Casting,” underscoring her editorial leadership and academic standing. Dr. Li also serves on the Young Editorial Boards of both “China Metallurgy” and “Continuous Casting,” demonstrating her influence in shaping scholarly discourse. Her recognition as an Outstanding Communist Party Member further reflects her commitment to institutional values and community engagement. Throughout her career, Dr. Li has received institutional and provincial grants for research and teaching innovation, including funding from the National Natural Science Foundation and the Shanxi Key R&D Program. She has led projects selected as exemplary in school-enterprise collaboration and graduate education reform. Her pioneering work has resulted in seven authorized invention patents and one notable scientific achievement transformation. These honors represent not only professional validation but also an acknowledgment of her dedication to fostering innovation, academic excellence, and public service in metallurgical engineering and higher education.

Conclusion

Dr. Yihong Li stands as a distinguished scholar and educator whose contributions to metallurgical engineering have garnered national and institutional recognition. Her career seamlessly blends theoretical research with practical innovation, educational advancement with scientific exploration, and academic leadership with social responsibility. From her foundational education at Guizhou University and the University of Science and Technology Beijing to her current professorship at Taiyuan University of Science and Technology, she has maintained a trajectory of excellence and impact. Dr. Li’s work in high-quality steel purification, reactor design, and AI applications positions her at the forefront of modern metallurgy. Her prolific output—including over 30 published articles, multiple patents, and collaborative textbooks—demonstrates her dedication to knowledge creation and dissemination. Equally commendable is her commitment to student development, as seen in her design of practical teaching models and mentorship in graduate programs. Through her editorial service, research leadership, and institutional reform efforts, Dr. Li continues to shape the future of metallurgical science in China. Her achievements reflect not only technical proficiency but also a passion for sustainable development and academic innovation. As she moves forward, Dr. Li remains dedicated to advancing metallurgical engineering as both a science and a transformative societal force.

 Publications Top Notes

  1. Title: Solvent-free green synthesis of zeolite A from coal fly ash for the removal of Pb²⁺
    Authors: Zhang, Peng; Niu, Yiting; Wang, Yang; Zhang, Pengju; Zhao, Xin
    Year: 2025

  2. Title: Evolution of the solid-liquid interface using a novel hybrid corrosion inhibitor to improve Al-air battery performance
    Authors: Zhang, Peng; Peng, Wei; Miao, Jing; Li, Yihong; Zhang, Pengju
    Year: 2025
    Citations: 1

  3. Title: Enhancing peroxymonosulfate activation for tetracycline degradation using metallurgical iron-containing solid waste: A novel and straightforward high-value utilization process of LT ash
    Authors: Zhang, Peng; Wang, Yang; Peng, Wei; Zhang, Pengju; Zhao, Xin
    Year: 2025

  4. Title: Water Model Study on Alloy Melting and Mixing in RH Refining Process
    Authors: Xu, Zhibo; Chen, Chao; Wang, Jia; Xue, Liqiang; Fan, Jinping
    Year: 2025

Günther Kain | Material Science | Best Researcher Award

Dr. Günther Kain | Material Science | Best Researcher Award

Researcher From Salzburg University of Applied Sciences, Austria

Günther Kain is an accomplished expert in wood technology, interior design, and material innovation, with extensive experience in academia, research, and consultancy. His career spans over a decade of contributions to sustainable building materials, with a particular focus on insulation solutions using tree bark. As a lecturer at Salzburg University of Applied Sciences, he supervises master theses and teaches advanced wood science topics. Kain is also a judicial assessor and a self-employed consultant specializing in wood construction, interior design, and building physics, particularly in landmarked buildings. His research has led to numerous publications and awards, showcasing his expertise in environmental sustainability and renewable building materials. Passionate about integrating innovation with tradition, Kain continues to shape the future of sustainable construction while actively engaging in educational and professional development initiatives.

Professional Profiles

Education

Günther Kain has a diverse academic background, beginning with his diploma studies in Forest Products Technology and Timber Construction at Salzburg University of Applied Sciences. He further pursued a master’s in Forest Products Technology & Management, focusing on product development. His doctoral studies at Holzforschung München, Technical University Munich, explored tree bark insulation boards, analyzing material structure and property relationships. Complementing his education, Kain attended a Graduate School program at Technical University Munich, gaining soft skills training. He also acquired specialized certifications, including a master craftsman’s diploma in carpentry and qualifications in consulting engineering for interior design, wood technology, and the timber industry. His ongoing pursuit of professional development is evident in his participation in the “Train the Trainer” seminar at the European Heritage Academy and various university courses in education counseling and school management.

Professional Experience

Kain’s professional journey encompasses academic teaching, consulting, and research. Since 2011, he has been a lecturer at Salzburg University of Applied Sciences, focusing on wood technology and material innovation. Simultaneously, he has been a judicial assessor specializing in joinery and wood products. Since 2009, Kain has operated as a self-employed consultant, providing expertise in wood construction, interior design, and building physics, particularly in historic and landmarked buildings. His technical teaching role at the Higher Technical College Hallstatt further reinforces his dedication to education. In addition to academia, Kain gained practical experience through internships at the Austrian Forest Agency, where he worked on wood quality assessment and forestry assistance. His expertise has made him a sought-after authority in sustainable construction, material science, and wood-based innovations.

Research Interests

Kain’s research interests revolve around sustainable building materials, particularly the development and application of wood-based and tree bark insulation products. His work explores the structural and thermal properties of these materials, emphasizing their potential in energy-efficient and environmentally friendly construction. Additionally, he investigates computational modeling of material properties, utilizing advanced technologies such as computed tomography to analyze insulation boards. Kain is also interested in historic building preservation, focusing on optimizing ventilation and insulation techniques to enhance energy performance while maintaining architectural integrity. His research contributes to broader discussions on climate change mitigation through sustainable materials, supporting global efforts toward ecological construction and innovative building practices.

Research Skills

Kain possesses advanced research skills in material science, structural analysis, and thermal performance evaluation. His expertise includes computed tomography for material characterization, discrete modeling of structure-property relationships, and experimental testing of wood-based insulation materials. He is proficient in statistical data analysis, employing software such as SPSS and MATLAB for quantitative research. Kain has extensive experience in academic writing and publishing, having contributed to high-impact journals in wood science and sustainable construction. Additionally, he is skilled in technical consulting, translating research findings into practical applications for industrial and architectural use. His ability to bridge theoretical research with real-world implementation highlights his multidisciplinary approach to advancing sustainable material innovations.

Awards and Honors

Kain’s contributions to wood technology and sustainable construction have earned him multiple prestigious awards. In 2009, the Chamber of Commerce Salzburg recognized him as the best alumnus of Salzburg University of Applied Sciences. He received the Science Award of the Chamber of Labour Salzburg in 2013 for his research on bark insulation materials. His work played a significant role in Austria’s winning contribution to the Solar Decathlon California, where tree bark insulation panels were featured. In 2015, he won the Ö1 Hörsaal Open Innovation Award for his advancements in tree bark insulation. Additionally, in 2019, he was awarded the GÖD BMHS Innovation Award for optimizing the historic ventilation system of the Burgtheater Vienna. These accolades underscore his impactful contributions to academia, research, and sustainable building practices.

Conclusion

Günther Kain is a distinguished researcher, educator, and consultant dedicated to advancing sustainable construction through wood technology and material science. His expertise in tree bark insulation and energy-efficient building solutions has made significant contributions to academic research and practical applications in historic preservation and innovative building materials. With a strong foundation in education, research, and industry experience, Kain continues to push the boundaries of sustainable architecture while mentoring future professionals in the field. His numerous awards and extensive publication record highlight his commitment to environmental innovation and the promotion of renewable resources in construction. As he continues his career, Kain remains focused on integrating traditional craftsmanship with modern technological advancements to shape the future of sustainable design and energy-efficient building solutions.

 Publications Top Notes

  1. “The Insulating Performance of Double Windows: Investigations in the Test Stand and in Practice”

    • Authors: Günther Kain, Friedrich Idam, Peter Hunger, Sabine Bonfert

    • Year of Publication: 2024

  2. “Beschattungsrahmen für die Fenster-Außenbeschattung im Denkmalbereich”

    • Authors: Günther Kain, Friedrich Idam, Alfons Huber

    • Year of Publication: 2023

  3. “Physical-Mechanical Properties of Light Bark Boards Bound with Casein Adhesives”

    • Authors: Johannes Urstöger, Günther Kain, Felix Prändl, Marius Catalin Barbu, Lubos Kristak

    • Year of Publication: 2023​​

    • Citations:  2