Salah Almudhhi | Petroleum Engineering | Best Researcher Award

Prof. Salah Almudhhi | Petroleum Engineering | Best Researcher Award

Professor at Kuwait University, Kuwait

Dr. Salah M. Almudhhi is a distinguished academic and expert in petroleum engineering, renowned for his multidisciplinary approach that combines traditional petroleum technologies with cutting-edge innovations like nanotechnology and machine learning. With a professional journey spanning over three decades, Dr. Almudhhi currently serves as an Assistant Professor at Kuwait University, where he has played integral roles in both academic and administrative capacities. His academic credentials are rooted in petroleum engineering, having earned his B.S. from Kuwait University and his M.S. and Ph.D. from the Colorado School of Mines in the USA. Dr. Almudhhi has held leadership roles in national environmental bodies, including serving as Director General of the Environment Public Authority in Kuwait. He has published extensively in high-impact journals, with key contributions in enhanced oil recovery, wettability measurements, and rock-fluid characterization. Dr. Almudhhi has supervised numerous graduate research projects and has actively participated in national and international committees related to energy and environmental policy. Recognized with multiple honors, including the “Environment Person of the Year in Asia 2012,” he continues to bridge academia, industry, and policy through his expertise and dedication. His work is distinguished by its practical impact on sustainable energy production and environmental stewardship in the petroleum sector.

Professional Profile

Education

Dr. Salah M. Almudhhi’s educational journey reflects a robust and focused progression in the field of petroleum engineering. He began his academic pursuits at Kuwait University, where he earned a Bachelor of Science degree in Petroleum Engineering in 1994. Building upon this foundation, he pursued advanced studies at the prestigious Colorado School of Mines in the United States, where he obtained both his Master of Science in 1998 and his Doctor of Philosophy in 2003. His M.S. thesis, titled “The ‘Spinning Disk’ Approach to Capillary Pressure Measurement with a Centrifuge Experiment,” demonstrated his early focus on experimental techniques in reservoir engineering. For his Ph.D. dissertation, “Experimental Evaluation of the Petrophysical Algorithm in an Integrated Flow Model,” Dr. Almudhhi explored the integration of petrophysical data into dynamic reservoir simulations, establishing his specialization in enhanced recovery modeling. His academic training provided him with a deep understanding of both theoretical and applied aspects of petroleum systems. This solid educational background laid the groundwork for his innovative research and teaching in reservoir characterization, rock mechanics, and environmental impact assessments in the oil and gas industry. His education has continuously informed his interdisciplinary approach to engineering challenges and policy leadership.

Professional Experience

Dr. Salah M. Almudhhi brings a wealth of professional experience that bridges academia, industry, and environmental governance. He began his academic career as a Teaching Assistant at the Colorado School of Mines from 2000 to 2002. Following his Ph.D., he joined Kuwait University as an Assistant Professor in 2003 and resumed this role after a leadership stint, continuing from 2014 to the present. He served as Acting Chairman of the Petroleum Department in 2004 and played a key role in curriculum development and faculty advancement. From 2009 to 2014, Dr. Almudhhi was appointed Director General of Kuwait’s Environment Public Authority, where he simultaneously chaired multiple national environmental and energy committees. His portfolio included roles such as Executive Secretary of the Supreme Council for the Environment and State Representative to numerous UN and GCC environmental programs. He has also held prominent advisory positions in Kuwait’s Ministry of Public Works and Ministry of Education. Within the university, he has served on various departmental, college, and university-level committees, emphasizing research development, international cooperation, and strategic planning. Dr. Almudhhi’s blend of technical expertise, academic rigor, and environmental advocacy positions him as a highly influential figure in both scientific and governmental domains.

Research Interest

Dr. Salah M. Almudhhi’s research interests focus on the interplay between rock-fluid properties, enhanced oil recovery, and the integration of emerging technologies in petroleum engineering. His foundational work in rock and fluid characterization laid the basis for deeper exploration into wettability, a key factor influencing reservoir performance. His investigations into wettability measurements—particularly in carbonate and shale reservoirs—have enhanced understanding of capillary pressure behavior and contact angle variability. Dr. Almudhhi has also directed research toward the application of nanotechnology in improving oil recovery, emphasizing the role of nanoparticle-engineered fluids in tight formations. His current research delves into machine learning applications for modeling heavy oil viscosity and rock mechanics, aiming to bridge data science with traditional reservoir engineering. Through collaborative graduate research projects, he supervises work on fluid dynamics, permeability modeling, and tensile strength in relation to brine salinity. Additionally, Dr. Almudhhi maintains an active interest in environmental monitoring and its implications for upstream petroleum operations. His research is geared toward solutions that improve reservoir performance while maintaining ecological balance. With an integrative approach that spans experimental, computational, and environmental disciplines, Dr. Almudhhi continues to contribute significantly to the evolution of petroleum science and sustainability.

Research Skills

Dr. Salah M. Almudhhi possesses a comprehensive array of research skills that underscore his interdisciplinary and application-focused approach to petroleum engineering. His core technical strengths lie in rock and fluid characterization, including advanced wettability analysis, capillary pressure evaluation, and relative permeability measurements. He has significant experience with both conventional laboratory techniques and modern analytical methods such as nuclear magnetic resonance (NMR) and spinning disk centrifuge experiments. Dr. Almudhhi has developed proficiency in modeling and simulation, particularly in the use of integrated flow models to interpret petrophysical data. His recent work involves leveraging machine learning tools to predict oil viscosity and compressive strength in reservoir rocks, showcasing his adaptability in digital technologies. He also has expertise in environmental assessment methodologies, having designed impact studies and coordinated national reports under frameworks like the UNFCCC. Dr. Almudhhi’s ability to bridge experimental research with computational analytics has been reflected in over 17 peer-reviewed publications. He actively applies his research skills in supervising student projects, grant acquisition, and curriculum development. His scientific rigor, coupled with policy-driven applications, allows him to contribute meaningfully to both academic and environmental solutions in the petroleum and energy sectors.

Awards and Honors

Dr. Salah M. Almudhhi has received multiple awards and recognitions for his exceptional contributions to petroleum engineering and environmental policy. Among his most prestigious accolades is the “Environment Person of the Year in Asia” award, conferred in 2012 in Dubai, UAE. This award acknowledged his pioneering work in bridging petroleum science with environmental stewardship during his tenure as Director General of the Environment Public Authority in Kuwait. He was also the recipient of the “Award of Recognition in Environment” from the Kuwait Oil Company in 2010, reflecting his national impact on sustainable practices in the energy sector. Additionally, Dr. Almudhhi was honored with the GCC Environmental Achievement Award in Oman in 2011, which recognized his efforts in regional environmental collaboration and policy development. His involvement in numerous high-level environmental committees, both regionally and internationally, underscores the respect he commands as a scientific advisor and public policy expert. His memberships in professional societies, such as the Society of Petroleum Engineers and the Kuwait Society of Engineers, further affirm his standing in the global engineering community. These honors collectively reflect a career committed to excellence in research, teaching, and service to society.

Conclusion

In conclusion, Dr. Salah M. Almudhhi stands as a highly accomplished and visionary figure in the realm of petroleum engineering, whose work seamlessly integrates academic excellence, research innovation, and public policy leadership. With advanced degrees from the Colorado School of Mines and a longstanding commitment to Kuwait University, he has shaped a generation of engineers through his teaching, mentorship, and curricular contributions. His diverse research portfolio—ranging from wettability and nanofluid applications to machine learning modeling—demonstrates a proactive engagement with the evolving challenges of energy production. His leadership roles in environmental governance, including his service as Director General of the Environment Public Authority, reflect his dedication to sustainability and international collaboration. A recipient of multiple national and international awards, Dr. Almudhhi continues to influence both academia and public institutions through his strategic insight and interdisciplinary expertise. His legacy is not only marked by his scholarly publications and student mentorship but also by his commitment to integrating technological advancement with environmental responsibility. As a leader, educator, and researcher, Dr. Almudhhi exemplifies the transformative power of science in addressing real-world challenges in the oil and energy sectors.

Publications Top Notes

  1. Application of Machine Learning for Modeling Heavy Oil Viscosity
    Authors: Salah Almudhhi, Haitham M.S. Lababidi, Ali A. Garrouch
    Year: 2025

  2. Are Natural Fractures in Sandstone Reservoir: Water Wet – Mixed Wet – Or Oil Wet?
    Authors: Salah Almudhhi, Laila Abdullah, Waleed Al-Bazzaz, Saleh Alsayegh, Hussien Alajaj, Ralph Flori
    Year: 2022

  3. An Unconventional Approach in Investigating Wettability Contact Angle Measurement in Shale Resources
    Author: Salah Almudhhi
    Year: 2021

  4. Predicting the Flow Zone Indicator of Carbonate Reservoirs Using NMR Echo Transforms and Routine Open-Hole Log Measurements
    Authors: Salah Almudhhi, M. Al-Dousari, A. Garrouch
    Year: 2021

  5. Investigating Wettability Contact Angle Measurement in Kuwaiti Heavy Oil Reservoir and Modeling Using 2D Imaging Technologies
    Authors: Waleed Albazzaz, Salah Almudhhi, Mohammed Alostath
    Year: 2019

  6. Recovery of Crude from OVL in Joint Operations, Wafra, Kuwait
    Author: Salah M. Almudhhi
    Year: 2016

  7. Histopathological Survey of Potential Biomarkers for the Assessment of Contaminant Related Biological Effects in Species of Fish and Shellfish Collected from Kuwait Bay, Arabian Gulf
    Authors: S. Masoud, Salah Almudhhi, M. Alenezi
    Year: 2014

  8. Investigating Rock-Face Boundary Effects on Capillary Pressure and Relative Permeability Measurements
    Authors: O. A. Alomair, Salah M. Almudhhi, M. M. Aldousari
    Year: 2011

  9. An Experimental Investigation of the Impact of Diffusion Osmosis and Chemical Osmosis on the Stability of Shales
    Authors: T. Al-Bazali, Salah Almudhhi, M. Chenevert
    Year: 2011

  10. Averaging Effect on Elastic Wave Velocity in an Integrated Flow Model
    Authors: S. M. Almudhhi, O. Alomair
    Year: 2009

  11. Experimental Evaluation of the Petrophysical Algorithm in an Integrated Flow Model
    Authors: S. M. Almudhhi, J. R. Fanchi
    Year: 2009

  12. Experimental Presentation of an Integrated Flow Model
    Author: S. M. Almudhhi
    Year: 2007