Shijia Lu | Medical Discoveries | Best Researcher Award

Mr. Shijia Lu | Medical Discoveries | Best Researcher Award

Sanquan College of Xinxiang Medical University, China

Shijia Lu is an emerging biomedical researcher and Associate Editor of the Guide to Biomedical Research Tools, affiliated with Sanquan College of Xinxiang Medical University. With a foundational academic background in Biotechnology, she has focused her expertise on tumor-targeted therapy and drug resistance mechanisms. As a Student Member of the Chinese Society for Biotechnology, she actively contributes to bridging computational biology with clinical oncology. Her research integrates network pharmacology, molecular dynamics, and in silico simulations to explore anti-cancer drug discovery. Shijia has led and participated in several significant research projects, including a Henan Province Science and Technology Innovation initiative. Her contributions as first author to a peer-reviewed SCI journal article on PCNA-targeted inhibitors have drawn national recognition. She has won three national research awards and two provincial translation honors, reflecting her interdisciplinary proficiency. Known for developing dual-ligand inhibitors that counteract mutation-based resistance, her work has received acclaim in innovation competitions and scientific circles alike. Passionate about leveraging bioinformatics for real-world medical challenges, Shijia promotes tool-based translational cancer research through editorial leadership. Her professional trajectory demonstrates a strong commitment to advancing oncology therapeutics through an integrative and experimental lens, making her an excellent candidate for the Young Scientist Award.

Professional Profile

ORCID Profile

 Education

Shijia Lu holds a Bachelor’s degree in Biotechnology from Sanquan College of Xinxiang Medical University, where she built a solid foundation in the molecular and cellular mechanisms underpinning disease, especially cancer. During her academic tenure, she distinguished herself by merging theoretical coursework with hands-on laboratory research, focusing on tumor biology and pharmacological interventions. Her keen interest in bioinformatics led her to independently master essential research software such as AutoDock Vina, STRING, Cytoscape, and others, allowing her to translate genomic and proteomic data into therapeutic insights. As part of her academic progression, she actively engaged in university-sponsored research competitions and projects that emphasized the intersection of computational biology and experimental science. Her education was not confined to the classroom—she collaborated across departments on interdisciplinary initiatives, strengthening her expertise in network pharmacology, molecular simulation, and drug-target interaction studies. Her early exposure to grant-funded projects and her participation in the Henan Province Science and Technology Innovation Program further solidified her academic profile. With a rigorous academic background paired with a practical grasp of translational biomedical research, Shijia Lu is well-prepared for a long-term career in developing innovative solutions for drug-resistant cancer therapies.

 Professional Experience

Shijia Lu has cultivated an impressive blend of editorial, research, and project leadership experience. Currently serving as the Associate Editor of the Guide to Biomedical Research Tools, she curates and reviews innovative bioinformatics and molecular biology tools for cancer research, aiding scientists across disciplines. Beyond editorial responsibilities, Shijia has actively led three major university-level research projects and collaborated on a province-level scientific initiative, demonstrating both autonomy and teamwork in research execution. Her landmark role as Principal Investigator on the 2025–2026 PCNA-targeted inhibitor project marks a high point in her professional experience, where she designed dual-ligand molecules to overcome drug resistance mutations. She also oversaw the development of a patented anti-tumor drug screening system, highlighting her capacity for product-oriented research. Her consultancy work in national innovation contests, where she secured second place for a novel cancer treatment strategy, further underscores her practical contributions. Shijia’s experience spans laboratory-based experimental verification, high-level simulation, and tool development. Her engagement in both academic and translational science demonstrates a maturity beyond her years, making her an asset to collaborative biomedical innovation. Her multifaceted career blends scientific rigor with editorial insight, contributing meaningfully to cancer research advancement.

Research Interest

Shijia Lu’s research is deeply rooted in the mechanisms of tumor-targeted therapy and overcoming resistance through computational and experimental synergy. She is particularly interested in how network pharmacology, molecular docking, and bioinformatics can converge to inform drug discovery for aggressive cancers. Her ongoing work explores PCNA (Proliferating Cell Nuclear Antigen) as a pivotal target in anticancer therapy, focusing on its mutations, druggability, and protein interaction networks. Shijia leverages cutting-edge tools such as ESM-Fold, MM/GBSA simulations, and AutoDock Vina to identify novel compounds and validate them through simulation-driven predictions. Her interdisciplinary curiosity extends to toxicogenomics, as seen in her research on ribavirin-induced hemolytic anemia. A key facet of her research interest is “multi-dimensional synergy,” a concept she introduced to integrate dual-ligand designs and structural-functional coupling strategies. She also utilizes multi-omics datasets to pinpoint plant-derived bioactives, such as from pomegranate peel, offering eco-sustainable therapeutic options. This combination of wet-lab experiments and dry-lab modeling makes her approach both innovative and pragmatic. Shijia’s vision is to bridge in silico drug design with clinical applicability, ultimately reducing trial costs and improving therapeutic precision. Her research ambition is to contribute meaningfully to the fight against cancer by creating data-validated, mutation-resistant therapeutic options.

 Research Skills

Shijia Lu possesses an advanced set of interdisciplinary research skills that span computational biology, molecular pharmacology, and bioinformatics. She is proficient in molecular docking (AutoDock Vina), protein interaction analysis (STRING), pathway visualization (Cytoscape), and structure prediction (ESM-Fold). These skills have enabled her to develop innovative inhibitors, simulate their interactions under mutation conditions, and validate their potential efficacy in silico. Her command over MM/GBSA free energy calculations has been crucial in quantifying ligand-protein binding affinities in mutation scenarios. Beyond software, she is experienced in network pharmacology frameworks, toxicogenomic analysis, and data-driven compound screening, using multi-omics datasets to identify phytochemicals for anti-cancer properties. Shijia is also skilled in designing and conducting wet-lab experiments, including molecular cloning and cell-based assays, for validating computational predictions. Her capabilities extend to scientific writing, patent filing, and data visualization—key components that have facilitated her publication in an SCI-indexed journal and the development of a research reference book. Furthermore, her leadership as a principal investigator in multiple research projects shows her competence in proposal writing, budget management, and collaborative project execution. Her comprehensive skill set equips her to tackle multifaceted biomedical challenges and positions her as a strong contributor to translational cancer research.

Awards and Honors

Shijia Lu has received multiple prestigious recognitions that affirm her contributions to biomedical research and innovation. She is the recipient of three national-level awards from competitive research and innovation contests in the medical health category, including second place at the Fourth National College Students’ Innovation and Entrepreneurship Competition. Her project, “A New Anti-Cancer Strategy Targeting PCNA,” earned national acclaim for its novel approach to overcoming drug resistance using dual-ligand inhibitors. Additionally, she has won two provincial awards for excellence in scientific translation, demonstrating her ability to convey complex biomedical content across languages—a skill vital in international research collaboration. Shijia has also been recognized through institutional grants and provincial-level research sponsorships, such as the Henan Province Science and Technology Innovation Project (No: 252102310194), for which she played a leading role in experimental verification. Her achievements extend to academic publishing, with her first-author SCI paper being widely cited and referenced in cancer pharmacology studies. These accolades reflect her exceptional interdisciplinary capacity, scientific communication proficiency, and innovative mindset. Through consistent recognition at institutional, provincial, and national levels, Shijia Lu has proven herself a rising leader in biomedical research deserving of the Young Scientist Award.

Conclusion

In summary, Shijia Lu exemplifies the ideal profile of a young and dynamic biomedical researcher dedicated to tackling some of the most pressing challenges in oncology. With a robust academic background, hands-on project leadership, and deep technical skills in computational drug design and network pharmacology, she has already made notable contributions to the field of tumor-targeted therapy. Her research on PCNA-targeted inhibitors has not only earned her national recognition but also holds translational promise in overcoming cancer drug resistance. As an Associate Editor and an active member of academic societies, Shijia promotes interdisciplinary collaboration and innovation. Her commitment is evident in her editorial work, her numerous research outputs, and her continuous quest for merging digital simulation with practical experimentation. Through her combination of creativity, technical mastery, and academic leadership, she represents the new generation of scientists driving biomedical progress forward. With several national awards and published research to her credit, she is poised to contribute significantly to future breakthroughs in cancer treatment. For her excellence in research, leadership potential, and impactful contributions.

Publications Top Notes

Title:
Design and Anti-Drug Resistance Research of Novel PCNA-Targeted Inhibitors Based on Network Pharmacology and Molecular Docking

Authors:
Shijia Lu, YiRan Zhen, Jinwen Sima, Jinle Wang, Qihao Zhu, Miaoyan Han, Mengdan Sang, Xuejiao Li, Bing Zhang, Zihan Wang, et al.

Year:
2025

Salah Almudhhi | Petroleum Engineering | Best Researcher Award

Prof. Salah Almudhhi | Petroleum Engineering | Best Researcher Award

Professor at Kuwait University, Kuwait

Dr. Salah M. Almudhhi is a distinguished academic and expert in petroleum engineering, renowned for his multidisciplinary approach that combines traditional petroleum technologies with cutting-edge innovations like nanotechnology and machine learning. With a professional journey spanning over three decades, Dr. Almudhhi currently serves as an Assistant Professor at Kuwait University, where he has played integral roles in both academic and administrative capacities. His academic credentials are rooted in petroleum engineering, having earned his B.S. from Kuwait University and his M.S. and Ph.D. from the Colorado School of Mines in the USA. Dr. Almudhhi has held leadership roles in national environmental bodies, including serving as Director General of the Environment Public Authority in Kuwait. He has published extensively in high-impact journals, with key contributions in enhanced oil recovery, wettability measurements, and rock-fluid characterization. Dr. Almudhhi has supervised numerous graduate research projects and has actively participated in national and international committees related to energy and environmental policy. Recognized with multiple honors, including the “Environment Person of the Year in Asia 2012,” he continues to bridge academia, industry, and policy through his expertise and dedication. His work is distinguished by its practical impact on sustainable energy production and environmental stewardship in the petroleum sector.

Professional Profile

Education

Dr. Salah M. Almudhhi’s educational journey reflects a robust and focused progression in the field of petroleum engineering. He began his academic pursuits at Kuwait University, where he earned a Bachelor of Science degree in Petroleum Engineering in 1994. Building upon this foundation, he pursued advanced studies at the prestigious Colorado School of Mines in the United States, where he obtained both his Master of Science in 1998 and his Doctor of Philosophy in 2003. His M.S. thesis, titled “The ‘Spinning Disk’ Approach to Capillary Pressure Measurement with a Centrifuge Experiment,” demonstrated his early focus on experimental techniques in reservoir engineering. For his Ph.D. dissertation, “Experimental Evaluation of the Petrophysical Algorithm in an Integrated Flow Model,” Dr. Almudhhi explored the integration of petrophysical data into dynamic reservoir simulations, establishing his specialization in enhanced recovery modeling. His academic training provided him with a deep understanding of both theoretical and applied aspects of petroleum systems. This solid educational background laid the groundwork for his innovative research and teaching in reservoir characterization, rock mechanics, and environmental impact assessments in the oil and gas industry. His education has continuously informed his interdisciplinary approach to engineering challenges and policy leadership.

Professional Experience

Dr. Salah M. Almudhhi brings a wealth of professional experience that bridges academia, industry, and environmental governance. He began his academic career as a Teaching Assistant at the Colorado School of Mines from 2000 to 2002. Following his Ph.D., he joined Kuwait University as an Assistant Professor in 2003 and resumed this role after a leadership stint, continuing from 2014 to the present. He served as Acting Chairman of the Petroleum Department in 2004 and played a key role in curriculum development and faculty advancement. From 2009 to 2014, Dr. Almudhhi was appointed Director General of Kuwait’s Environment Public Authority, where he simultaneously chaired multiple national environmental and energy committees. His portfolio included roles such as Executive Secretary of the Supreme Council for the Environment and State Representative to numerous UN and GCC environmental programs. He has also held prominent advisory positions in Kuwait’s Ministry of Public Works and Ministry of Education. Within the university, he has served on various departmental, college, and university-level committees, emphasizing research development, international cooperation, and strategic planning. Dr. Almudhhi’s blend of technical expertise, academic rigor, and environmental advocacy positions him as a highly influential figure in both scientific and governmental domains.

Research Interest

Dr. Salah M. Almudhhi’s research interests focus on the interplay between rock-fluid properties, enhanced oil recovery, and the integration of emerging technologies in petroleum engineering. His foundational work in rock and fluid characterization laid the basis for deeper exploration into wettability, a key factor influencing reservoir performance. His investigations into wettability measurements—particularly in carbonate and shale reservoirs—have enhanced understanding of capillary pressure behavior and contact angle variability. Dr. Almudhhi has also directed research toward the application of nanotechnology in improving oil recovery, emphasizing the role of nanoparticle-engineered fluids in tight formations. His current research delves into machine learning applications for modeling heavy oil viscosity and rock mechanics, aiming to bridge data science with traditional reservoir engineering. Through collaborative graduate research projects, he supervises work on fluid dynamics, permeability modeling, and tensile strength in relation to brine salinity. Additionally, Dr. Almudhhi maintains an active interest in environmental monitoring and its implications for upstream petroleum operations. His research is geared toward solutions that improve reservoir performance while maintaining ecological balance. With an integrative approach that spans experimental, computational, and environmental disciplines, Dr. Almudhhi continues to contribute significantly to the evolution of petroleum science and sustainability.

Research Skills

Dr. Salah M. Almudhhi possesses a comprehensive array of research skills that underscore his interdisciplinary and application-focused approach to petroleum engineering. His core technical strengths lie in rock and fluid characterization, including advanced wettability analysis, capillary pressure evaluation, and relative permeability measurements. He has significant experience with both conventional laboratory techniques and modern analytical methods such as nuclear magnetic resonance (NMR) and spinning disk centrifuge experiments. Dr. Almudhhi has developed proficiency in modeling and simulation, particularly in the use of integrated flow models to interpret petrophysical data. His recent work involves leveraging machine learning tools to predict oil viscosity and compressive strength in reservoir rocks, showcasing his adaptability in digital technologies. He also has expertise in environmental assessment methodologies, having designed impact studies and coordinated national reports under frameworks like the UNFCCC. Dr. Almudhhi’s ability to bridge experimental research with computational analytics has been reflected in over 17 peer-reviewed publications. He actively applies his research skills in supervising student projects, grant acquisition, and curriculum development. His scientific rigor, coupled with policy-driven applications, allows him to contribute meaningfully to both academic and environmental solutions in the petroleum and energy sectors.

Awards and Honors

Dr. Salah M. Almudhhi has received multiple awards and recognitions for his exceptional contributions to petroleum engineering and environmental policy. Among his most prestigious accolades is the “Environment Person of the Year in Asia” award, conferred in 2012 in Dubai, UAE. This award acknowledged his pioneering work in bridging petroleum science with environmental stewardship during his tenure as Director General of the Environment Public Authority in Kuwait. He was also the recipient of the “Award of Recognition in Environment” from the Kuwait Oil Company in 2010, reflecting his national impact on sustainable practices in the energy sector. Additionally, Dr. Almudhhi was honored with the GCC Environmental Achievement Award in Oman in 2011, which recognized his efforts in regional environmental collaboration and policy development. His involvement in numerous high-level environmental committees, both regionally and internationally, underscores the respect he commands as a scientific advisor and public policy expert. His memberships in professional societies, such as the Society of Petroleum Engineers and the Kuwait Society of Engineers, further affirm his standing in the global engineering community. These honors collectively reflect a career committed to excellence in research, teaching, and service to society.

Conclusion

In conclusion, Dr. Salah M. Almudhhi stands as a highly accomplished and visionary figure in the realm of petroleum engineering, whose work seamlessly integrates academic excellence, research innovation, and public policy leadership. With advanced degrees from the Colorado School of Mines and a longstanding commitment to Kuwait University, he has shaped a generation of engineers through his teaching, mentorship, and curricular contributions. His diverse research portfolio—ranging from wettability and nanofluid applications to machine learning modeling—demonstrates a proactive engagement with the evolving challenges of energy production. His leadership roles in environmental governance, including his service as Director General of the Environment Public Authority, reflect his dedication to sustainability and international collaboration. A recipient of multiple national and international awards, Dr. Almudhhi continues to influence both academia and public institutions through his strategic insight and interdisciplinary expertise. His legacy is not only marked by his scholarly publications and student mentorship but also by his commitment to integrating technological advancement with environmental responsibility. As a leader, educator, and researcher, Dr. Almudhhi exemplifies the transformative power of science in addressing real-world challenges in the oil and energy sectors.

Publications Top Notes

  1. Application of Machine Learning for Modeling Heavy Oil Viscosity
    Authors: Salah Almudhhi, Haitham M.S. Lababidi, Ali A. Garrouch
    Year: 2025

  2. Are Natural Fractures in Sandstone Reservoir: Water Wet – Mixed Wet – Or Oil Wet?
    Authors: Salah Almudhhi, Laila Abdullah, Waleed Al-Bazzaz, Saleh Alsayegh, Hussien Alajaj, Ralph Flori
    Year: 2022

  3. An Unconventional Approach in Investigating Wettability Contact Angle Measurement in Shale Resources
    Author: Salah Almudhhi
    Year: 2021

  4. Predicting the Flow Zone Indicator of Carbonate Reservoirs Using NMR Echo Transforms and Routine Open-Hole Log Measurements
    Authors: Salah Almudhhi, M. Al-Dousari, A. Garrouch
    Year: 2021

  5. Investigating Wettability Contact Angle Measurement in Kuwaiti Heavy Oil Reservoir and Modeling Using 2D Imaging Technologies
    Authors: Waleed Albazzaz, Salah Almudhhi, Mohammed Alostath
    Year: 2019

  6. Recovery of Crude from OVL in Joint Operations, Wafra, Kuwait
    Author: Salah M. Almudhhi
    Year: 2016

  7. Histopathological Survey of Potential Biomarkers for the Assessment of Contaminant Related Biological Effects in Species of Fish and Shellfish Collected from Kuwait Bay, Arabian Gulf
    Authors: S. Masoud, Salah Almudhhi, M. Alenezi
    Year: 2014

  8. Investigating Rock-Face Boundary Effects on Capillary Pressure and Relative Permeability Measurements
    Authors: O. A. Alomair, Salah M. Almudhhi, M. M. Aldousari
    Year: 2011

  9. An Experimental Investigation of the Impact of Diffusion Osmosis and Chemical Osmosis on the Stability of Shales
    Authors: T. Al-Bazali, Salah Almudhhi, M. Chenevert
    Year: 2011

  10. Averaging Effect on Elastic Wave Velocity in an Integrated Flow Model
    Authors: S. M. Almudhhi, O. Alomair
    Year: 2009

  11. Experimental Evaluation of the Petrophysical Algorithm in an Integrated Flow Model
    Authors: S. M. Almudhhi, J. R. Fanchi
    Year: 2009

  12. Experimental Presentation of an Integrated Flow Model
    Author: S. M. Almudhhi
    Year: 2007

Zhen Zhang | Material Science | Best Researcher Award

Prof. Dr. Zhen Zhang | Material Science | Best Researcher Award

Professor, Doctoral Supervisor at Northwestern Polytechnical University, China

Prof. Zhen Zhang, currently serving as Professor and Doctoral Supervisor at Northwestern Polytechnical University, is an internationally recognized expert in energy electrocatalysis. He earned his Ph.D. from the University of Waterloo, Canada, where he later served as a Postdoctoral Fellow and Senior Researcher. His return to China marked the beginning of an impressive academic career supported by recognitions such as the Shaanxi Province High-Level Talent title, Young Talent of Xi’an Association for Science and Technology, and Aoxiang Overseas Scholar. Prof. Zhang has authored over 50 SCI-indexed papers with appearances in high-impact journals including JACS, Advanced Materials, Angewandte Chemie, and ACS Nano. He has published 14 ESI Highly Cited Papers, earning over 5,500 citations and an H-index of 38. Notably, he also leads over a dozen national and industrial research projects. His global collaborations, prestigious fellowships, and key editorial roles across several journals underscore his leadership in catalysis and electrochemical energy research. Through groundbreaking research in confined electrocatalysis, he continues to push the boundaries of fuel cells, CO₂ reduction, and hydrogen energy systems, making him a compelling candidate for the Best Researcher Award.

Professional Profile

Education

Prof. Zhang completed his Ph.D. in a highly competitive and research-intensive environment at the University of Waterloo, Canada, a world-leading institution in nanotechnology and electrochemical systems. During his doctoral training, he focused on fundamental and applied aspects of electrochemical energy systems, particularly in the development of functional nanomaterials for electrocatalysis. His strong academic performance and early research breakthroughs earned him numerous accolades, including the Ontario Graduate Scholarship, University of Waterloo President’s Graduate Scholarship, and the prestigious Chinese Government Award for Outstanding Self-Financed Students Abroad. These honors, limited to a small number of exceptional scholars, underscore his academic excellence and research potential. After obtaining his doctorate, he continued his academic journey at the same institution as a Postdoctoral Fellow and later as a Senior Researcher. His postdoctoral work laid a strong foundation for advanced material design and electrochemical process innovation, preparing him for his subsequent independent career in China. This robust academic background underpins his expertise in energy electrocatalysis and has greatly contributed to his impactful research in designing confined active sites and scalable electrocatalytic systems for sustainable energy applications.

Professional Experience

Prof. Zhen Zhang brings a wealth of academic and industrial research experience in electrocatalytic energy systems. After completing his Ph.D. and postdoctoral training at the University of Waterloo, he transitioned into senior research roles and significantly contributed to projects at the Waterloo Centre for Electrochemical Energy and the Ontario Battery and Electrochemistry Research Centre. His leadership roles extended to Canada’s national facilities, including the Canadian Light Source (CLS), where he spearheaded collaborative efforts in synchrotron spectroscopy. Upon joining Northwestern Polytechnical University, he quickly rose to prominence, assuming the role of Professor and Doctoral Supervisor and securing multiple high-level talent recognitions. He leads a total of 16 research projects, including national and provincial initiatives and a major industrial collaboration funded with 30 million RMB focused on fuel cell technologies. Prof. Zhang holds editorial appointments in top-tier journals and serves as a session chair at international conferences, illustrating his status in the global scientific community. His industrial experience is equally strong, with practical applications of his research findings in battery technologies and fuel cells, further enhanced through partnerships with global research leaders. Prof. Zhang exemplifies the ideal academic leader who bridges high-impact research with real-world applications.

Research Interest

Prof. Zhang’s research centers on the design and development of advanced energy electrocatalytic materials and systems. His main areas of focus include the CO₂ reduction reaction (CO₂RR), oxygen reduction/evolution reactions (ORR/OER), and hydrogen evolution/oxidation reactions (HER/HOR), all of which are central to the future of sustainable energy conversion and storage. He is particularly renowned for his innovations in confined electrocatalytic systems, where he manipulates the local chemical environment and structure at atomic scales to enhance activity, selectivity, and stability. Prof. Zhang has proposed novel frameworks for functional confined supports, hierarchical structures, and atomically dispersed active sites. His work is instrumental in breaking conventional performance trade-offs in catalysts by enabling dynamic modulation of catalytic behavior. Applications of his research span electrosynthesis, fuel cells, water electrolysis, and metal–air batteries. He integrates in situ spectroscopy and imaging tools to unravel catalyst dynamics, pushing the boundaries of fundamental understanding. His vision is to develop scalable, high-efficiency electrocatalytic systems that enable clean energy technologies, particularly for global carbon neutrality goals. Prof. Zhang’s interdisciplinary approach, combining chemistry, materials science, and engineering, positions him at the forefront of next-generation energy materials research.

Research Skills

Prof. Zhen Zhang is an expert in advanced electrochemical characterization, in situ synchrotron spectroscopy, and the rational design of nanostructured electrocatalysts. His skill set encompasses the synthesis of confined electrocatalytic structures, including zeolite-based conductive supports, bimetallic nanocatalysts, and atomic-scale active centers. He is proficient in electrochemical testing techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and membrane electrode assembly (MEA) fabrication. His strong command of in situ/operando techniques using synchrotron X-ray absorption, XPS, and transmission electron microscopy allows him to study the dynamic evolution of catalyst structures under working conditions. Prof. Zhang is adept at integrating theoretical simulations with experimental results to elucidate reaction mechanisms and guide material design. His leadership in project management is evidenced by his coordination of 16 funded projects, including industrial and interdisciplinary collaborations. Additionally, his editorial and peer-review responsibilities in high-impact journals demonstrate his critical analytical skills. His international collaborations reflect his ability to foster scientific exchange and execute large-scale research initiatives across borders. Prof. Zhang’s rare combination of synthetic, analytical, and collaborative skills makes him a uniquely effective researcher and mentor in the fast-evolving field of energy materials.

Awards and Honors

Prof. Zhen Zhang has received a distinguished array of awards and fellowships that highlight his contributions to energy research and academic leadership. Internationally, he was recognized with the Advanced Materials Award from the International Association of Advanced Materials and the prestigious Canadian Mitacs Accelerate Award—awarded to only ten individuals across Canada. As a doctoral student, he earned the highly competitive Chinese Government Award for Outstanding Self-Financed Students Abroad and the Waterloo Nanofellowship. These achievements underscore his excellence during his formative academic years. Nationally, he was named a Shaanxi Province High-Level Talent and selected as a Young Talent of the Xi’an Association for Science and Technology. He was also awarded the Aoxiang Overseas Scholar title and the University of Waterloo’s President’s Graduate Scholarship and Research Paper Award—each granted to fewer than ten scholars annually. These accolades reflect both his pioneering research in electrocatalysis and his leadership in international collaboration. As a Fellow of the Chinese Chemical Society and the Chinese Materials Research Society, Prof. Zhang continues to shape policy and innovation in material sciences. His awards affirm not just past success but a sustained trajectory of excellence and influence in advanced materials and electrochemistry.

Conclusion

Prof. Zhen Zhang is an exceptional scholar whose academic journey from the University of Waterloo to Northwestern Polytechnical University exemplifies scientific rigor, innovation, and leadership. With a research portfolio that seamlessly integrates fundamental science and industrial application, he has emerged as a trailblazer in energy electrocatalysis. His over 50 publications in top-tier journals, 14 ESI Highly Cited Papers, and an H-index of 38 reflect both the depth and impact of his work. His strong international collaborations, including with world-renowned scientists and institutions such as Argonne National Laboratory, McMaster University, and the Canadian Light Source, further validate his global research presence. Prof. Zhang’s editorial roles, fellowship in major chemical societies, and leadership in multimillion-yuan projects underscore his capability as a strategic thinker and institution-builder. His pioneering contributions to confined catalytic systems are addressing some of the most urgent global challenges in sustainable energy. As a scientist, mentor, and international collaborator, Prof. Zhang embodies the ideals of the Best Researcher Award, not only for his remarkable accomplishments but also for the promise his work holds for the future of clean energy. He is a role model for emerging researchers and a pillar in the global scientific community.

Publications Top Notes

 

  1. Title: Microporous framework membranes for precise molecule/ion separations
    Authors: H. Dou, M. Xu, B. Wang, Z. Zhang, G. Wen, Y. Zheng, D. Luo, L. Zhao, A. Yu, …
    Year: 2021
    Citations: 285

  2. Title: Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries
    Authors: D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, …
    Year: 2021
    Citations: 279

  3. Title: Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO₂
    Authors: J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, …
    Year: 2022
    Citations: 244

  4. Title: Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb₂O₅–x nanocluster toward superior Li–S performance
    Authors: D. Luo#, Z. Zhang# (co-first author), G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, …
    Year: 2020
    Citations: 237

  5. Title: Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries
    Authors: Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang, X. Gong, X. Sui, A. Yu, L. Zhao, …
    Year: 2020
    Citations: 218

  6. Title: Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium–sulfur batteries
    Authors: D. Luo, G. Li, Y. P. Deng, Z. Zhang, J. Li, R. Liang, M. Li, Y. Jiang, W. Zhang, …
    Year: 2019
    Citations: 216

  7. Title: Rational design of tailored porous carbon-based materials for CO₂ capture
    Authors: Z. Zhang, Z. P. Cano, D. Luo, H. Dou, A. Yu, Z. Chen
    Year: 2019
    Citations: 213

  8. Title: Regulation of outer solvation shell toward superior low‐temperature aqueous zinc‐ion batteries
    Authors: Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng, T. Or, L. Yang, Q. Li, Q. Cu, R. Feng, …
    Year: 2022
    Citations: 212

  9. Title: “Two Ships in a Bottle” Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting CO₂ Electroreduction
    Authors: Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, …
    Year: 2021
    Citations: 200

  10. Title: Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO₂ electroreduction
    Authors: B. Ren, G. Wen, R. Gao, D. Luo, Z. Zhang, W. Qiu, Q. Ma, X. Wang, Y. Cui, …
    Year: 2022
    Citations: 191

Likun Gao | Energy Sustainability | Best Researcher Award

Prof. Dr. Likun Gao | Energy Sustainability | Best Researcher Award

Professor at Northeast forestry University, China

Professor Likun Gao is a pioneering researcher in the interdisciplinary field of advanced wood-based materials, serving at the School of Materials Science and Engineering, Northeast Forestry University, China. His work is at the forefront of integrating wood science with cutting-edge nanotechnology, particularly focusing on wood nanogenerators, electrocatalytic wood, and multifunctional self-healing materials. With a robust foundation in wood science and engineering, he has rapidly ascended as an influential academic voice in materials research. His innovations have practical implications for sustainable energy, water splitting, environmental sensing, and extreme-condition applications. Professor Gao has authored over 40 peer-reviewed publications in premier journals such as Chem. Soc. Rev., PNAS, Energy & Environmental Science, and Advanced Functional Materials. His contributions include several highly cited papers and journal covers, affirming the novelty and impact of his research. He also holds multiple patents and has co-authored important book chapters related to electrocatalysis and wood-based functional materials. Recognized through prestigious programs like China’s National Ten Thousand Talents and the CAST Young Elite Scientists Sponsorship, Gao exemplifies the next generation of scientific leadership in sustainable and intelligent materials. His commitment to interdisciplinary collaboration and scientific innovation positions him as a transformative figure in applied materials science.

Professional Profile

Education

Likun Gao’s educational journey reflects a deep and consistent focus on wood science and materials engineering, beginning with a Bachelor of Science in Wood Science and Engineering from Northeast Forestry University in 2014. Demonstrating early academic promise, he pursued his doctoral studies at the same institution, earning a Ph.D. in Wood Science and Technology in 2020. His doctoral research was marked by a growing interest in integrating biological materials with nanotechnology to produce functional composites. As part of his Ph.D. program, Gao was selected for an international research stint at the Georgia Institute of Technology, USA, from 2018 to 2020. There, he expanded his expertise in materials science and engineering, engaging with global experts and exploring the intersection of nanomaterials and bio-based resources. This international exposure enriched his methodological rigor and allowed him to contribute to several high-impact collaborations. His academic background forms the backbone of his innovative research portfolio and underpins his current leadership in multifunctional wood-based materials. The comprehensive, cross-continental training he received has equipped him with a unique perspective on the potential of sustainable materials in modern technology.

Professional Experience

Since March 2021, Professor Likun Gao has been serving as a full Professor at Northeast Forestry University’s School of Materials Science and Engineering. In this role, he leads a dynamic research group exploring the frontier of wood nanotechnology and sustainable energy materials. Building on his doctoral and international postdoctoral experiences, he has established an impressive track record of research output and innovation. Under his leadership, the lab has produced over 40 peer-reviewed journal articles, numerous high-impact papers, and several patents. His collaborations span interdisciplinary teams focused on energy conversion, smart materials, and environmental responsiveness. In addition to his scientific output, Professor Gao is also dedicated to mentoring students and early-career researchers. He regularly supervises graduate students, fostering an environment of creativity, innovation, and academic rigor. His teaching responsibilities include advanced courses in nanomaterials, wood science, and electrocatalysis. Beyond academic instruction, Gao actively contributes to national and international research projects and often serves as a reviewer for top-tier journals. His role as a professor is multifaceted—blending research, mentorship, collaboration, and academic service—which has rapidly elevated his stature in China’s scientific community and beyond.

Research Interest

Professor Likun Gao’s research interests lie at the convergence of sustainable materials science and advanced nanotechnology, focusing particularly on wood-derived functional materials. One of his core areas is the development of wood nanogenerators, including piezoelectric and triboelectric devices, as well as cellulose-based systems. These innovations provide new pathways for harvesting renewable energy from environmental sources, especially in flexible and wearable electronics. Another major focus is electrocatalytic wood, where Gao engineers wood-based single-atom electrocatalysts for applications like water splitting, targeting efficient and green hydrogen production. He also pioneers in multifunctional, self-healing wood-based materials that exhibit unique properties such as photothermal responsiveness, anti-icing, sensing, and environmental adaptability. These materials are particularly promising for use in extreme weather conditions and smart infrastructure. His research approach is distinctly bioinspired, aiming to replicate or enhance natural functionalities through molecular-level material engineering. By leveraging the structural anisotropy and hierarchical nature of wood, Gao is able to design novel platforms for catalysis and energy generation. His interests also span surface reconstruction mechanisms, dynamic active-site modulation, and intelligent material design, reflecting a deep commitment to creating smart, eco-friendly technologies.

Research Skills

Professor Gao possesses a robust and multifaceted skill set that bridges wood science, nanotechnology, materials engineering, and electrocatalysis. His expertise includes the fabrication and functionalization of wood-derived nanogenerators, capable of converting mechanical energy into electrical energy through triboelectric and piezoelectric effects. He is also skilled in the design and synthesis of single-atom electrocatalysts embedded in wood substrates, which are essential for enhancing the kinetics of water-splitting reactions. Gao’s technical toolkit includes advanced material characterization techniques such as SEM, TEM, XPS, Raman spectroscopy, and in situ operando methods, which he uses to explore catalytic mechanisms and interface dynamics. Additionally, he has substantial experience in surface modification strategies to imbue wood-based composites with photothermal, hydrophobic, and self-healing properties. His lab routinely integrates superhydrophobic coatings, carbonization techniques, and atomic doping to create responsive multifunctional materials. Professor Gao also has notable strengths in writing scientific publications, securing research grants, and patenting novel technologies. His collaborative work with international teams underscores his ability to work across disciplines and cultural contexts, making him an agile and resourceful scientist in the global research landscape.

Awards and Honors

Professor Likun Gao has garnered widespread recognition for his pioneering work in wood-based functional materials, receiving numerous prestigious awards that underscore his contributions to scientific innovation and academic excellence. In 2023, he was selected for China’s National Ten Thousand Talents Program for High-level Young Talents—one of the country’s highest honors for young researchers. A year prior, in 2022, he was awarded the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (CAST), an accolade reserved for researchers demonstrating extraordinary potential in advancing science and technology. He also received the Excellent Young Scholar Award from the Natural Science Foundation of Heilongjiang Province, recognizing his outstanding research in applied materials. Professor Gao has contributed to 3 book chapters and authored over 40 high-quality journal articles, several of which were highlighted as ESI Highly Cited Papers, journal cover stories, or Hot Papers. His intellectual property portfolio includes five patents, reflecting a commitment to practical innovation. These honors collectively affirm his leadership in the field and serve as milestones in a career defined by creativity, scientific rigor, and impactful problem-solving.

Conclusion

In summary, Professor Likun Gao stands as a dynamic and forward-thinking figure in the fields of materials science and wood-based nanotechnology. His research bridges the gap between nature and cutting-edge engineering, offering solutions for sustainable energy, smart materials, and functional composites. With a strong academic foundation, international exposure, and a commitment to interdisciplinary research, Gao has built a formidable reputation as a scientist, educator, and innovator. His work is not only scientifically profound but also socially and environmentally relevant, addressing global challenges like clean energy, climate resilience, and sustainable resource use. Through a combination of technical expertise, scholarly productivity, and leadership, Professor Gao has earned national and international recognition. As a young academic leader, he continues to push the boundaries of material innovation while fostering the next generation of researchers. With a track record of high-impact publications, prestigious awards, and cross-disciplinary collaboration, he is well-positioned to influence both academic advancements and industrial applications. The trajectory of his career reflects a deep-seated passion for discovery and a vision for materials that are both intelligent and sustainable.

Publications Top Notes

  1. Title: Wood-based triboelectric nanogenerator integrated with superhydrophobicity and photothermal-induced self-healing for high-temperature and high-humidity environment
    Authors: M. Wang, X. Li, D. Lv, P. He, C. Yang, J. Li, L. Gao*
    Year: 2025

  2. Title: High-Loading Single Atoms via Hierarchically Porous Nanospheres for Oxygen Reduction Reaction with Superior Activity and Durability
    Year: 2025

  3. Title: Self-supported N-doped carbon-coupled Ni–Co binary nanoparticle electrodes derived from bionic design of wood cell walls for durable overall water splitting
    Authors: C. Yang, R. Jin, Z. Liu, S. Li, D. Lv, J. Liu, J. Li, Z. Lin*, L. Gao*
    Journal: Journal of Materials Chemistry A
    Year: 2024

  4. Title: Collaborative integration of ultrafine Fe₂P nanocrystals into Fe, N, P-codoped carbon nanoshells for highly-efficient oxygen reduction
    Year: 2023
    Citations: 56

Zecong Xiao | Precision Medicine | Best Researcher Award

Assoc. Prof. Dr. Zecong Xiao | Precision Medicine | Best Researcher Award

Associate Research Fellow at The Third Affiliated Hospitial of Sun Yat sen University, China

Dr. Zecong Xiao is a distinguished Associate Research Fellow and Master’s Supervisor at the Nanomedicine Center, The Third Affiliated Hospital of Sun Yat-sen University. As a recognized member of Sun Yat-sen University’s prestigious “Hundred Talents Program” for Young Talents, Dr. Xiao is known for his pioneering research in nanomedicine, tumor immunotherapy, and tissue engineering. Born on January 5, 1992, he has swiftly risen through the academic ranks, demonstrating a strong commitment to translational biomedical research. His scientific contributions are substantiated by an H-index of 24 and over 1,900 citations. Dr. Xiao has published 49 SCI-indexed articles, with 41 of them as first or corresponding author in high-impact journals like Science Advances, ACS Nano, Bioactive Materials, and Signal Transduction and Targeted Therapy. He has effectively integrated interdisciplinary strategies in engineering, pharmacology, and immunotherapy to advance cancer treatment methodologies. Beyond his publication record, he has served as a principal investigator in numerous national and provincial research grants, with total funding exceeding 2 million RMB. His ongoing commitment to innovation, mentoring, and collaborative science positions him as a prominent thought leader in applied biomedical research in China and beyond.

Professional Profile

Education

Dr. Zecong Xiao has received comprehensive academic training across multiple disciplines relevant to pharmaceutical and biomedical research. He earned his Ph.D. in Engineering with a focus on Materials Science from Sun Yat-sen University in June 2020, where he initiated his foundational research into drug delivery systems and nanomedicine. His doctoral work equipped him with interdisciplinary expertise blending materials science, pharmacology, and immunotherapy—areas central to his current research pursuits. Prior to his doctoral studies, he completed a Master’s degree in Medicine with a specialization in Pharmacology at Wenzhou Medical University in 2017. This phase of his education provided a critical understanding of drug mechanisms and therapeutic interventions at the cellular and systemic levels. Dr. Xiao began his academic journey with a Bachelor of Science in Pharmacy from Jiangxi University of Chinese Medicine in 2014, grounding him in pharmaceutical sciences and traditional Chinese medicine. Each phase of his education not only broadened his technical skills but also deepened his commitment to translational research, laying a strong foundation for his contributions to cancer immunotherapy and advanced drug delivery technologies. His academic background showcases a rare integration of pharmacological principles and engineering applications.

Professional Experience

Dr. Zecong Xiao currently serves as an Associate Research Fellow and Master’s Supervisor at the Nanomedicine Center of The Third Affiliated Hospital of Sun Yat-sen University. Since March 2023, he has been actively involved in cutting-edge research focused on nanodrug delivery, tumor-targeting immunotherapy, and tissue engineering repair. His role involves supervising graduate students, leading national and university-level research projects, and publishing high-impact papers. Before this, from August 2020 to August 2022, Dr. Xiao completed a productive postdoctoral fellowship at The Second Affiliated Hospital of Guangzhou Medical University. During this period, he developed a number of innovative nanomedicine strategies for targeted cancer therapy, earning national-level funding and recognition. Dr. Xiao’s professional experience reflects a trajectory of consistent scientific growth, marked by deep collaborations across disciplines such as bioengineering, immunology, and clinical oncology. His participation in multi-million RMB projects, both as principal investigator and key contributor, highlights his strategic thinking and leadership. At every career stage, he has demonstrated a clear vision for applying laboratory innovation to clinical contexts. His position in Sun Yat-sen’s “Hundred Talents Program” further affirms his status as a rising star in translational biomedical research in China.

Research Interest

Dr. Zecong Xiao’s research interests lie at the dynamic interface of nanomedicine, immunotherapy, and materials science. His work is primarily focused on the design and development of smart drug delivery systems that can effectively target tumors and modulate the immune microenvironment for enhanced therapeutic efficacy. He is particularly interested in functional nanomaterials that can bypass biological barriers to deliver payloads such as siRNA, small molecules, and proteins directly to diseased tissues. Dr. Xiao’s lab explores methods for improving T-cell infiltration into solid tumors using bioorthogonal nanodrug strategies and CAR-T cell modifications. He is also deeply involved in the study of tumor interstitial pressure and how to engineer delivery platforms that overcome this hurdle. Recently, his research has expanded into tissue engineering and regenerative medicine, with projects investigating hydrogel-based scaffolds and MOF-based delivery systems for spinal cord injury and wound healing. His translational approach aims to bridge the gap between fundamental materials science and clinical applications in oncology and regenerative therapy. Overall, Dr. Xiao’s interdisciplinary focus on applying nanoscale innovations to solve complex biomedical problems situates him at the forefront of next-generation therapeutic development.

Research Skills

Dr. Zecong Xiao possesses an extensive and advanced skill set that supports his multidisciplinary research in nanomedicine and cancer immunotherapy. He is proficient in the synthesis and characterization of functional nanomaterials, including stimuli-responsive nanoparticles, metal-organic frameworks (MOFs), and hydrogel-based delivery systems. He demonstrates expertise in drug encapsulation techniques, bioorthogonal chemistry, and surface functionalization, which are critical for targeted delivery and controlled release. Dr. Xiao is also well-versed in various in vitro and in vivo experimental models, enabling comprehensive evaluation of therapeutic efficacy and biocompatibility. His ability to integrate imaging technologies such as fluorescence microscopy and ultrasound enhances his work in biodistribution and real-time tracking of nanodrugs. In immunological applications, he is skilled in flow cytometry, ELISA, cytokine profiling, and T-cell modification techniques such as CAR-T engineering. Computational modeling and statistical analysis are further tools he utilizes for experimental design and data interpretation. In addition to laboratory competencies, Dr. Xiao has demonstrated proficiency in academic writing, grant proposal development, and project management, contributing to his success in securing multiple national research grants. Collectively, these skills empower him to conduct high-impact, translational research aimed at improving clinical outcomes in oncology and tissue regeneration.

Awards and Honors

Dr. Zecong Xiao has earned significant recognition for his research contributions, highlighted by his selection into the prestigious “Hundred Talents Program” at Sun Yat-sen University—a testament to his exceptional promise as a young scientist. This competitive initiative supports top-tier early-career researchers, offering substantial research funding and institutional support. He has also received the First-Class Grant from the China Postdoctoral Science Foundation, acknowledging his groundbreaking work on matrix clearance-based nanodelivery systems to improve T-cell tumor infiltration. Dr. Xiao has served as Principal Investigator on multiple nationally and provincially funded projects, including grants from the National Natural Science Foundation of China and the Guangdong Provincial Science Fund for Applied Basic Research. His cumulative research funding exceeds 2 million RMB, reflecting the strong institutional and governmental trust in his work. In addition to funding awards, his published works have garnered widespread academic acclaim, accumulating over 1,900 citations and an H-index of 24—extraordinary achievements for a researcher of his age. His papers frequently appear in top-tier journals with impact factors exceeding 10, further underscoring the innovation and relevance of his research in the global scientific community.

Conclusion

Dr. Zecong Xiao exemplifies the next generation of translational researchers, leveraging multidisciplinary expertise to address some of the most pressing challenges in medicine. Through a strong foundation in materials science, pharmacology, and nanotechnology, he has developed innovative solutions for cancer immunotherapy and tissue engineering. His prolific academic output—comprising 49 high-impact publications and a rapidly growing citation record—reflects both the depth and breadth of his contributions. As a core member of Sun Yat-sen University’s “Hundred Talents Program,” he continues to inspire through mentorship, collaboration, and leadership in scientific research. His success in securing major research grants highlights both his visionary research goals and his strategic planning capabilities. With demonstrated excellence in both fundamental science and clinical translation, Dr. Xiao is poised to make lasting contributions to global healthcare, particularly in oncology, regenerative medicine, and nanomedicine. His career trajectory is a powerful example of how dedicated research, supported by institutional trust and personal perseverance, can drive scientific innovation with real-world impact. As his research continues to evolve, Dr. Xiao is set to remain at the forefront of biomedical discovery and application.

Publications Top Notes

1. Title: Endothelia-targeting eye drops deliver a STING inhibitor to effectively reduce retinal neovascularization in ischemic retinopathy
Authors: Siying Wen, Xuemin He, Jiachen Wang, Zheyao Wen, Heying Ai, Mengyin Cai, Yi Yang, Hejun Li, Shasha Li, Guojun Shi, Aimin Xu, Zecong Xiao, Xintao Shuai
Year: 2025

2. Title: Targeting m6A demethylase FTO to heal diabetic wounds with ROS-scavenging nanocolloidal hydrogels
Authors: Xinyao Zheng, S.Z. Deng, Yuan Li, Zhipeng Luo, Ziqi Gan, Zheng Zhang, Rui Xu, Shan Xiao, Yuxiong Cai, Jiazheng Meng, Li Li, Changxing Li, Xianghong Xue, Wei Dai, Qin Si, Mengying Wang, Kang Zeng, Zecong Xiao, Lai-Xin Xia
Year: 2025
Citations: 2

3. Title: A dissolvable microneedle platform for the delivery of tumor-derived total RNA nanovaccines for enhanced tumor immunotherapy
Authors: Jiachen Wang, Siying Wen, Yujie Jiang, Zheyao Wen, Minghao Zhang, Yuchen Li, Jujian Ye, Zecong Xiao, Xintao Shuai
Year: 2025

4. Title: A PD-L1 siRNA-Loaded Boron Nanoparticle for Targeted Cancer Radiotherapy and Immunotherapy
Authors: Shaohui Deng, Lijun Hu, Guo Chen, Jujian Ye, Siying Wen, Zecong Xiao, Xintao Shuai
Year: 2025
Citations: 2

5. Title: Tertiary lymphoid structure formation induced by LIGHT-engineered and photosensitive nanoparticles-decorated bacteria enhances immune response against colorectal cancer
Authors: Lijun Hu, Tan Li, Shaohui Deng, Honglin Gao, Yujie Jiang, Qiu Chen, Hui Chen, Zecong Xiao, Xintao Shuai, Zhongzhen Su
Year: 2025
Citations: 4

Quanbing Liu | Energy Sustainability | Best Researcher Award

Prof. Quanbing Liu | Energy Sustainability | Best Researcher Award

Professor of Guangdong University of Technology, China

Professor Quanbing Liu is a distinguished figure in the field of applied chemistry and electrochemical energy systems, currently serving as a full professor and doctoral supervisor at Guangdong University of Technology. With a strong foundation in applied chemistry, he has emerged as a key contributor to innovations in energy storage technologies, including lithium-ion, lithium-sulfur batteries, fuel cells, and supercapacitors. Dr. Liu has led numerous national and industrial research projects, with an extensive portfolio of 118 peer-reviewed scientific publications and 111 patents, showcasing his capacity for both academic excellence and practical innovation. His contributions have significantly advanced China’s energy technology sector. Recognized for his excellence, he holds prestigious titles such as Guangdong “Pearl River Scholar” and Guangzhou “Pearl River Science Star.” Dr. Liu has also served as a science advisor and expert reviewer for national science foundations and has held visiting scholar roles at leading international institutions. His robust collaboration with industry and government, combined with editorial roles in reputed scientific journals, reinforces his standing as a leading applied scientist. He is currently nominated for the Best Researcher Award for his pioneering contributions to the field of electrochemical energy.

Professional Profile

Education

Professor Quanbing Liu’s educational foundation in applied chemistry laid the groundwork for his successful research career. He earned his Bachelor of Science degree in Applied Chemistry from Wuhan Institute of Technology in 2007, where he developed a deep interest in chemical engineering and materials science. He then pursued doctoral studies at the South China University of Technology, completing his Ph.D. in Applied Chemistry in 2012. During his doctoral work, he focused on advanced materials and electrochemical energy systems, setting the stage for his subsequent innovations in lithium-ion battery technologies and energy storage solutions. His academic background has been instrumental in his ability to translate theoretical knowledge into high-impact industrial applications. This strong educational base continues to influence his current roles in mentoring doctoral students and leading breakthrough research at Guangdong University of Technology.

Professional Experience

Professor Liu’s professional journey is marked by a blend of academic, industrial, and governmental engagement. He began his career in research and development roles at the China Electric Power Research Institute (2012–2015), where he worked on lithium battery technologies. This was followed by a strategic role at Guanyu Battery (2015–2016), where he contributed to the commercialization of energy storage solutions. Since 2016, he has served as a Professor and Doctoral Supervisor at Guangdong University of Technology. He has also been a visiting scholar at the University of California, Riverside (UCR) and the Hong Kong University of Science and Technology (HKUST) in 2018, reflecting his international collaboration and research outreach. In 2017, he began serving in advisory roles for the National Natural Science Foundation of China (NSFC). His career trajectory demonstrates a rare ability to bridge academic theory and real-world application, making him an ideal candidate for awards recognizing applied scientific excellence.

Research Interests

Professor Liu’s research is centered on the development of advanced electrochemical energy storage and conversion systems, with a specific focus on lithium-ion and lithium-sulfur batteries, fuel cells, and supercapacitors. His work aims to address critical challenges in the new energy chemical industry by enhancing the energy density, cycle life, and safety of batteries and storage devices. A core component of his research involves material innovation—synthesizing novel electrode and electrolyte materials that improve electrochemical performance. He also investigates mechanisms at the atomic and molecular level using advanced characterization techniques. By integrating theory, experimentation, and industrial needs, Dr. Liu contributes to green energy transition efforts, supporting both electric mobility and large-scale energy storage applications. His projects often receive support from national and defense sectors, reflecting the strategic relevance of his research. Through multidisciplinary collaboration and cutting-edge science, his work plays a vital role in shaping the future of energy technology.

Research Skills

Professor Liu brings a comprehensive skill set in the domain of electrochemical materials and systems, combining deep scientific expertise with practical innovation capabilities. He is adept at battery design, electrode material synthesis, electrochemical performance analysis, and in-situ/operando characterization techniques. His ability to lead multi-disciplinary teams is evident in his coordination of national-level projects, where he integrates knowledge from chemistry, materials science, and electrical engineering. He possesses strong technical writing and presentation skills, having authored over 110 high-impact SCI papers and filed more than 100 patents. His industry exposure allows him to bridge the gap between laboratory findings and product development. Furthermore, Dr. Liu has experience with scientific instrumentation, safety protocols in battery testing, and lifecycle assessment methodologies. As a doctoral mentor and journal editorial board member, he demonstrates critical reviewing and mentoring skills, fostering academic rigor and ethical research standards in the scientific community. His strong analytical mindset and results-oriented approach make him a leader in applied scientific research.

Awards and Honors

Professor Quanbing Liu has received multiple prestigious recognitions for his outstanding contributions to science and technology. He is a recipient of the Guangdong “Pearl River Scholar” and Guangzhou “Pearl River Science Star” titles, awards that highlight top scientific talent in the region. His innovative research on lithium-ion battery systems earned him the Second Prize for Scientific Progress from Guangdong Province. Dr. Liu’s academic impact is further validated by his impressive citation record, with over 2,500 citations of his published works. He is regularly invited to serve as an expert reviewer for China’s Ministry of Science and Technology, the National Natural Science Foundation, and the Guangdong Department of Science and Technology. His achievements also include numerous invitations to editorial boards of high-ranking journals such as Chinese Chemical Letters, Rare Metals, and the Journal of Power Sources. These honors recognize not only his scientific innovation but also his influence on policy, education, and research leadership in China and abroad.

Conclusion

Professor Quanbing Liu embodies the qualities of an outstanding applied scientist—innovation-driven, industry-connected, and academically accomplished. His prolific output, including over 110 journal publications, 111 patents, and several high-impact research projects, stands as a testament to his dedication to advancing electrochemical energy systems. Through sustained collaborations with both international universities and domestic industry, Dr. Liu bridges the gap between fundamental research and practical application. His dual focus on scientific discovery and commercialization has helped shape battery technologies that serve real-world needs in energy storage and electric mobility. As an editorial board member, doctoral mentor, and governmental advisor, he continues to shape the broader research ecosystem in China. His work not only propels forward the field of electrochemical energy but also contributes to the nation’s strategic energy goals. In recognition of his transformative contributions and leadership in applied chemistry, Professor Liu is a deserving nominee for the Best Researcher Award under the Applied Scientist Awards program.

Publications Top Notes

  • Title: Construction of high-throughput interface phase using boron containing anions to regulate solvation structure and achieve high-performance sodium metal batteries
    Year: 2025

  • Title: Research progress on the structure design of nano-silicon anode for high-energy lithium-ion battery
    Year: 2025

  • Title: D-Band Center Modulation of Fe-Doping CoSe₂ to Accelerate Polysulfide Conversion for High-Performance Lithium–Sulfur Battery
    Year: 2025

  • Title: Heterogeneity-Segment Charge-Induced-Coupling Catalysis of Component-Selective-Type Covalent Organic Frameworks Interface toward Stabilizing Lithium Metal Anode
    Year: 2025
    Citations: 1

  • Title: Synthesis of a hollow MoSe₂@MXene anode material for sodium-ion batteries
    Year: 2025
    Citations: 1

  • Title: Functional gel materials for next-generation electrochromic devices and applications
    Type: Review
    Year: 2025

  • Title: Morphology engineering of hollow core@shell structured Co₃O₄@CuO-NiO for fast hydrogen release from ammonia borane methanolysis
    Year: 2025
    Citations: 11

  • Title: Small intestinal structure Ni₂P-CNTs@NHCF nanoreactor accelerating sulfur conversion kinetics for high performance lithium-sulfur batteries
    Year: 2025
    Citations: 3

  • Title: Tuning the Unloading and Infiltrating Behaviors of Li-Ion by a Multiphases Gradient Interphase for High-Rate Lithium Metal Anodes
    Year: 2025
    Citations: 1

  • Title: Sodium Phytate Cross-Linked Polyacrylic Acid as Multifunctional Aqueous Binder Stabilizes LiNi₀.₈Co₀.₁Mn₀.₁O₂ to 4.6 V

Suranjana Mayani | Material Science | Applied Research Award

Prof. Dr. Suranjana Mayani | Material Science | Applied Research Award

Professor & Head of Marwadi University Rajkot, India

Prof. (Dr.) Suranjana V. Mayani is an innovative and accomplished chemist with over two decades of expertise spanning heterogeneous catalysis, environmental remediation, and nanocomposite materials. Born on December 27, 1978, and holding M.Sc. and Ph.D. degrees from Gauhati University, she has dedicated her career to advancing green chemistry and sustainable material science. Her doctoral work on catalytic wet oxidation of phenols laid the foundation for her later research in mesoporous catalysts and nano‑structured composites. She has held major academic and research positions internationally—serving as Postdoctoral Fellow at Hoseo University (Korea), Research Professor at Dongguk University, and currently as Professor and Head of Chemistry at Marwadi University, India. Prof. Mayani has over 40 journal publications, eight book chapters, and numerous conference presentations. As a reviewer for prestigious international journals and an active member of chemical societies, she contributes actively to the scientific community. Her leadership in innovation is demonstrated by her roles in student start-up initiatives, core membership at Marwadi University’s research centre, and facilitation of funded projects in environmental and energy technology. Passionate about mentoring and sustainable science, she bridges fundamental research with applied solutions for global challenges.

Professional Profile

Education

Prof. Mayani completed her B.Sc. (Chemistry, Physics, Math, English) at B. Borooah College under Gauhati University in 2000, followed by an M.Sc. in Physical Chemistry with first class distinction in 2002 from the same university. Awarded a Ph.D. in Chemistry in 2009 from Gauhati University under the guidance of Prof. K. G. Bhattacharyya, her thesis focused on catalytic wet oxidation of phenol and related compounds, emphasizing environmental cleanup via heterogeneous chemistry. Additionally, in 2004, she earned an A‑grade Diploma in Cheminformatics from the Institute of Cheminformatics Studies, Noida. Her academic journey reflects a robust foundation in physical and organic chemistry, advanced analytical techniques (AAS, FTIR, UV–Vis, GC, GC‑MS, PXRD, TGA, SEM‑EDS, TEM, ICP‑OES, TOC), and computational chemistry tools. This strong educational background underpins her current research in nanocomposite materials, silica‑carbon hybrids, and green catalytic processes aimed at environmental and biotechnological applications. From fundamental science to interdisciplinary innovation, her qualifications showcase a blend of traditional chemistry expertise and modern scientific methodologies.

Professional Experience

Prof. Mayani’s career spans over 20 years, beginning with early roles at Gauhati University as Project Assistant (2004–2005), Junior Research Fellow (2005–2006), and Research Assistant (2006–2009), where she honed synthesis and characterization of mesoporous catalysts and developed advanced analytical skills. In 2009, she served as Visiting Research Scholar at CSIR‑CSMCRI, India. From 2010 to 2011, she was a Postdoctoral Fellow at Hoseo University, Korea, researching porous carbon frameworks and hybrid nanocomposites. Subsequently, she joined Dongguk University (2011–2018) as Assistant/Research Professor, leading work on metal‑impregnated SBA‑15, porous carbons, and composite catalysis. In 2018 she returned to India as Associate Professor at Marwadi University, teaching and managing projects in nanocomposites, azo-arylation, and coordination nanoparticle catalysis. Since July 2024, she has been Professor and Head of the Department of Chemistry, overseeing research in bionanocomposites, wound-healing bioformulations, biogas production, and plant‑based skincare. She has guided numerous funded research initiatives under SSIP and NewGen IEDC schemes, engaging students in projects from defluoridation techniques to sustainable coatings and energy materials. Her leadership, teaching, and research have continuously fostered academic excellence and innovation.

Research Interests

Prof. Mayani’s research centers on the design, synthesis, and application of advanced materials for sustainable science. Her key interests include nanocomposites, nanoparticles, organic–inorganic hybrid materials, and mesoporous structures. She develops silica–carbon frameworks and explores their catalytic functions and adsorption capabilities. Her environmental focus involves wastewater treatment strategies, utilizing heterogeneous catalysis and adsorption techniques to remediate pollutants like phenols, dyes, fluoride, and microplastics. She emphasizes valorization of agricultural and industrial wastes, converting them into functional materials. Additionally, she is investigating polymer composite systems for biomedical and environmental applications. Recent interests include bio-functionalized composites for wound healing, plant-extract-based skin formulations, and biogas-enhancing methods. Her multidisciplinary approach intersects materials chemistry, environmental engineering, and biotechnology, aiming to scale lab results into real-world solutions for clean water, renewable energy, and eco-friendly health products.

Research Skills

Prof. Mayani brings deep expertise in catalyst synthesis and a suite of analytical and characterization technologies: AAS, FTIR, UV‑Vis, GC, GC‑MS, PXRD, TGA, SEM‑EDS, TEM, ICP‑OES, CHNS analysis, TOC, and nitrogen adsorption–desorption isotherms. She excels in fabricating metal‑supported mesoporous frameworks (MCM‑41, SBA‑15) and porous carbon materials—achieving precise control over composition and structure. Her skills include green oxidation, catalytic reduction, azo-arylation, adsorption, photocatalysis, and composite formulation. She is proficient with cheminformatics tools (ChemDraw, Microcal Origin) and data analysis software. Her project management capabilities span grant writing, student mentorship, and cross-disciplinary collaboration. She integrates experimental methods with environmental monitoring techniques for air, water, and soil analysis, demonstrating rigorous data interpretation and sustainable deployment of technologies.

Awards and Honors

  • Recipient of the prestigious WISE-SCOPE Fellowship (DST, Government of India) for eco-friendly heavy-metal adsorption research—includes fellowship, research grant, field‑work support, and equipment funding.

  • Awarded seed grant from Marwadi University’s SSIP and NewGen IEDC schemes for projects on water defluoridation, fluoride removal, biogas production enhancement, silky‑skin formulations, and nanocomposite coatings (INR 2–2.5 million funding each).

  • Recognized as an invited reviewer and session chair/speaker at ISGST 2024, Malaysia.

  • Member of prestigious academic bodies: American Chemical Society, Korean Chemical Society, and Catalysis Society of India.

  • Serves on editorial and review boards of high-impact journals: Chemical Engineering Communications, CLEAN, Environmental Monitoring & Assessment, Ecotoxicology, ACS Omega, Nature’s Scientific Reports, among others, reflecting her leadership and scholarly prominence.

Conclusion

Prof. (Dr.) Suranjana V. Mayani exemplifies an academic leader whose work bridges groundbreaking research, effective teaching, and impactful innovation. With deep expertise in nanostructured catalysts, environmental remediation, and sustainable materials, she drives transformative projects and mentors future scientists. Her international experience, strong publication record, and active professional engagement underscore her dedication to advancing chemical science. Under her guidance, her department continues to flourish as a hub for interdisciplinary research, nurturing start-ups and delivering real-world solutions. A visionary educator and innovator, Prof. Mayani remains committed to leveraging science for societal benefit—pursuing excellence in education, research, and sustainable technology.

 

Publications Top Notes

1.
Title: Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM41
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2008
Citations: 121

2.
Title: Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2008
Citations: 76

3.
Title: Fe(III)-, Co(II)- and Ni(II)-impregnated MCM41 for wet oxidative destruction of 2,4-dichlorophenol in water
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2009
Citations: 63

4.
Title: A non-chromatographic method for the separation of highly pure naphthalene crystals from pyrolysis fuel oil
Authors: V.J. Mayani, S.V. Mayani, Y. Lee, S.K. Park
Year: 2011
Citations: 32

5.
Title: Catalytic destruction of 4‐chlorophenol in water
Authors: S. Chaliha, K.G. Bhattacharyya, P. Paul
Year: 2008
Citations: 29

6.
Title: Using Mn(II)−MCM41 as an Environment-Friendly Catalyst to Oxidize Phenol, 2-Chlorophenol, and 2-Nitrophenol in Aqueous Solution
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2008
Citations: 29

7.
Title: A sustainable nanocomposite Au(Salen)@CC for catalytic degradation of eosin Y and chromotrope 2R dyes
Authors: V.J. Mayani, S.V. Mayani, S.W. Kim
Year: 2017
Citations: 19

8.
Title: Synthesis and characterization of metal incorporated composite carbon materials from pyrolysis fuel oil
Authors: S.V. Mayani, V.J. Mayani, S.K. Park, S.W. Kim
Year: 2012
Citations: 19

9.
Title: Development of nanocarbon gold composite for heterogeneous catalytic oxidation
Authors: V.J. Mayani, S.V. Mayani, S.W. Kim
Year: 2012
Citations: 17

10.
Title: Catalytic wet oxidation of phenol and its derivatives with Fe₂O₃ and MnO₂
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2006
Citations: 16

 

Cavus Falamaki | Nanotechnology | Scientific Contribution Award

Prof. Cavus Falamaki | Nanotechnology | Scientific Contribution Award

Professor of Amirkabir University of Technology, Iran

Prof. Cavus Falamaki, born in 1964 in Italy, is a distinguished chemical engineer and Full Professor at Amirkabir University of Technology (AUT), Tehran. He holds a Ph.D. in Chemical Engineering from AUT, with part of his doctoral work completed at ETH Zurich, focusing on zeolite crystallization. With over two decades of academic experience, he has served in key positions at AUT and the Materials and Energy Research Center (MERC). His research encompasses zeolite synthesis, catalytic processes, membrane technology, nano-materials, and environmental engineering, with expertise in both theoretical modeling and practical applications. He has led numerous industrial and academic projects in fields like water treatment, CO₂ conversion, and nanoparticle synthesis, often integrating green chemistry and sustainable technologies. Prof. Falamaki is multilingual and actively contributes to teaching, research, and innovation. His achievements have earned him national and international recognition, including awards from Iran’s Biotech Festival, the Cyber International Genius Inventor Fair in South Korea, and honors in nanotechnology research. He is widely published and recognized for bridging fundamental science with real-world engineering solutions. Through his academic leadership and multidisciplinary work, he remains a key contributor to advancements in chemical engineering, catalysis, and nanotechnology, with ongoing contributions to science and industry alike.

Professional Profile

Education

Prof. Cavus Falamaki earned a Ph.D. in Chemical Engineering from Amirkabir University of Technology in Tehran in 1997. His doctoral research focused on mathematical modeling and aspects of ZSM‑5 zeolite crystallization—an area crucial for catalysis and material science applications. During his Ph.D., he was selected for an exchange opportunity, spending one year (1995–1996) at ETH Zurich’s Zeolite Group within the Laboratory of Crystallography. This international exposure enriched his understanding of crystallographic methods and international research collaboration. During his tenure at ETH, he contributed to advanced studies on zeolite structure and synthesis. Upon returning to Tehran, he completed his Ph.D. and applied these insights in both academic and industrial settings. This educational trajectory blends rigorous theoretical training with practical, hands-on experience at a world-renowned institution, preparing him for a career spanning modeling, materials, and nanotechnologies.

Professional Experience

Prof. Falamaki’s academic trajectory spans from Assistant Professor in 1997 to Full Professor since 2016, reflecting over two decades of sustained contributions. Between 1997 and 2006, he served as Assistant Professor in the Ceramics Department at the Materials and Energy Research Center (MERC), Iran’s Ministry of Science, Research, and Technology. He was promoted to Associate Professor in 2006–2007 at MERC before transitioning to the Department of Chemical Engineering at AUT from 2007 onward. At AUT, he served as Associate Professor from 2007 until achieving Full Professor status in 2016. In these roles, he taught courses in crystallization theory, catalytic processes, zeolite synthesis, water treatment, nano‑materials, and membrane science at undergraduate and graduate levels. His earlier experiences at MERC also included managing ceramic processing and research teams and heading departments, which honed his leadership. He has successfully headed numerous research projects—spanning zeolite catalysts, membranes, water desalination, wastewater treatment, and CO₂ conversion—underscoring his integration of academia and industry. His progression highlights a balance of instructional expertise, laboratory leadership, and impactful applied research.

Research Interests

Prof. Falamaki’s research concentrates on catalyst development, membrane technology, nano-material synthesis, and environmental applications. His primary interests include mathematical and molecular modeling of crystallization processes, zeolite synthesis (especially ZSM‑5 and clinoptilolite), and catalytic systems for petrochemicals such as xylene isomerization and propane-SCR of NOx emissions. He also explores green synthesis routes—e.g., graphene oxide composites, gold nanoparticle production in microfluidic reactors—and catalysis for CO oxidation, methanol synthesis from CO₂, and selective separations like p-xylene molecular sieves. Another major thrust is advanced membranes: ceramic nano-filtration, sintered membrane reactors for oxidative coupling, and micro-supercapacitors, targeting water desalination or pollutant removal. His strong interest in sustainable and green chemical processes is exemplified through studies on bio-polymers for ion sequestration, water desalination via hydrates, and pollutant removal. Together, these highlight his cross-disciplinary approach—melding chemical engineering, materials science, nanotechnology, and environmental applications.

Research Skills

Prof. Falamaki possesses a rich suite of research skills spanning theoretical modeling, materials synthesis, catalysis, nano- and micro-fabrication, and analytical evaluation. He excels in mathematical and molecular modeling—particularly in crystallization kinetics and thermodynamics—and is adept with DFT simulations, molecular dynamics, and adsorption modeling. His lab expertise encompasses synthesizing zeolites, gold nanoparticles via microfluidic reactors, graphene composites, ceramic membranes, and nano-structured oxides. He has hands-on experience with pilot- and lab-scale reactor design, sintering methods, microwave-assisted processing, and membrane fabrication. Analytical skills include techniques like BET surface analysis, SPR sensors, resistive pulse sensing, electrode/electrochemical performance testing, and adsorption/desorption kinetics. Combined with his strength in green process development—like catalytic CO₂ hydrogenation, propane-SCR, and capacitive deionization—he demonstrates a comprehensive toolkit bridging theory to industrial application.

Awards and Honors

Prof. Falamaki’s contributions have been recognized by multiple awards at national and international levels. In 2013, he received recognition among the Top Three Products at Iran’s Biotech 2013 Festival, awarded by the Iranian Biotechnology Development Initiative under the Presidency. In 2011, he earned a Silver Award at the Cyber International Genius Inventor Fair in Seoul, South Korea, for an innovative invention. Earlier accolades include his selection as one of the Top Ten National Researchers in Nanotechnology by the Iranian Nanotechnology Initiative in 2007, and recognition as a Distinguished Researcher at MERC in 2006. These honors highlight his impact spanning biotechnology, invention, and nanotechnology, underscoring his innovative spirit and leadership in interdisciplinary science.

Conclusion

Prof. Cavus Falamaki is an accomplished academic whose career integrates advanced research, teaching, and leadership, anchored in his doctoral expertise in zeolite crystallization. His international exposure at ETH Zurich, extensive publication record, and decades of service at AUT and MERC reflect both depth and breadth. With a strong emphasis on catalysis, nano-materials, membranes, and environmental technologies, his work spans fundamental modeling to pilot-scale implementation. Recognized with several awards—including national honors in biotech and nanotechnology and global invention awards—his influence is both local and international. As a professor, researcher, and mentor, Prof. Falamaki embodies a commitment to innovation, sustainability, and interdisciplinary inquiry.

Publications Top Notes

  1. Title: Gold nanoparticles green production using diethyl carbonate as continuum phase in a dripping regime microfluidic reactor
    Year: 2025

  2. Title: Adsorption of asphaltene molecules on functionalized SiO₂ nanoparticles at atmospheric and high pressures in heptane/toluene environment: A molecular dynamics simulation study
    Year: 2024
    Citations: 2

  3. Title: Casein/starch composites: novel binders for green carbonaceous electrodes applied in the capacitive deionization of water
    Year: 2023
    Citations: 5

  4. Title: Mass transfer analysis of the isochoric–isotherm hydrate-based water desalination from CO₂/C₃H₈ gas mixtures
    Year: 2023

  5. Title: Nanoparticle Tracking Analysis: Enhanced Detection of Transparent Materials
    Year: 2023
    Citations: 3

  6. Title: Modified BET theory for actual surfaces: implementation of surface curvature
    Year: 2023
    Citations: 2

  7. Title: A comprehensive study of intravenous iron-carbohydrate nanomedicines: From synthesis methodology to physicochemical and pharmaceutical characterization
    Citations: 1

  8. Title: 3D Graphene for Capacitive De-ionization of Water
    Citations: 1

  9. Title: Applying a new approach to predict the residence time distribution in impinging streams reactors
    Year: 2023
    Citations: 3

 

Feixiang Tang | Mechanic | Young Innovator Award

Mr. Feixiang Tang | Mechanic | Young Innovator Award

Feixiang Tang at Wuhan University, China.

Mr. Feixiang Tang is currently a Ph.D. candidate in Mechanical and Electronic Engineering at the School of Power and Mechanical Engineering, Wuhan University, under the supervision of Academician Prof. Sheng Liu. He holds a Bachelor’s degree in Material Forming and Control Engineering from Chang’an University (211 Project) and a Master’s degree from the School of Aerospace at Xi’an Jiaotong University (985 Project), supervised by Prof. Yaqin Song.

With extensive research and industrial experience in microelectromechanical systems (MEMS), semiconductor packaging, and nonlinear mechanics, Mr. Tang has led and participated in multiple national key R&D projects and provincial high-tech initiatives. His research bridges theory with practical applications, embodying deep integration of industry, academia, and research.

Professional Profile

Education

  • Ph.D. in Mechanical and Electronic Engineering
    Wuhan University (985 Project), China
    Advisor: Prof. Sheng Liu (Academician)

  • M.Sc. in Aerospace Engineering
    Xi’an Jiaotong University (985 Project), China
    Advisor: Prof. Yaqin Song

  • B.Eng. in Material Forming and Control Engineering
    Chang’an University (211 Project), China
    Advisor: Prof. Yongnan Chen

Professional Experience

  • Product Manager, Hefei Archimedes Electronics Co., Ltd. (2023.8–2024.5)

    • Led product design and selection of IGBT power semiconductor components

    • Oversaw project development, familiar with power semiconductor manufacturing

  • R&D Engineer, BOE Technology Group Co., Ltd., Hefei (2018.9–2020.9)

    • Specialized in display technologies including LCD and OLED

    • Experienced in full-cycle semiconductor display manufacturing

Research Interests

  • MEMS microneedle biomechanics and biocompatibility

  • Multiphysics coupling and nonlinear mechanics in chip manufacturing and packaging

  • Advanced semiconductor device physics and mechanical design

  • Photothermal and coupled field effects in nano/microstructures

Publications Top Notes

1. Vibration Study of Functionally Graded Microcantilever Beams in Fluids Based on Modified Couple Stress Theory by Considering the Physical Neutral Plane

Journal: International Journal of Structural Stability and Dynamics
Date: 2025-05-30
DOI: 10.1142/S0219455425501093
Co-authors: Jize Jiang, Feixiang Tang, Sen Gu, Siyu He, Fang Dong, Sheng Liu

2. Vibration Analysis of Al–Al₂O₃ Micro-Cantilever Sandwich Beams with Porosity in Fluids

Journal: Micromachines
Date: 2025-02-11
DOI: 10.3390/mi16020206
Co-authors: Feixiang Tang, Xiong Yuan, Siyu He, Jize Jiang, Shaonan Shi, Yuhan Li, Wenjin Liu, Yang Zhou, Fang Dong, Sheng Liu

3. Vibration Analysis of Porous Cu–Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory

Journal: Nanomaterials
Date: 2024-07-03
DOI: 10.3390/nano14131144
Co-authors: Jize Jiang, Feixiang Tang, Siyu He, Fang Dong, Sheng Liu

4. Size-dependent Vibration Analysis of the Simply Supported Functionally Graded Porous Material Al–Al₂O₃ Rectangle Microplates Based on the Modified Couple Stress Theory with Innovative Consideration of Neutral Plane and Scale Distribution

Journal: Multidiscipline Modeling in Materials and Structures
Date: 2024-03-08
DOI: 10.1108/MMMS-09-2023-0314
Co-authors: Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong, Sheng Liu

5. Analysis of Size-Dependent Linear Static Bending, Buckling, and Free Vibration Based on a Modified Couple Stress Theory

Journal: Materials
Date: 2022-10
DOI: 10.3390/ma15217583
Co-authors: Feixiang Tang, Siyu He, Shaonan Shi, Shun Xue, Fang Dong, Sheng Liu

6. Size-Dependent Buckling and Post-Buckling Analysis of the Functionally Graded Thin Plate Al–Cu Material Based on a Modified Couple Stress Theory

Journal: Nanomaterials
Date: 2022-10
DOI: 10.3390/nano12193502
Co-authors: Feixiang Tang, Fang Dong, Yuzheng Guo, Shaonan Shi, Jize Jiang, Sheng Liu

Conclusion

Mr. Feixiang Tang exemplifies a well-rounded young researcher and innovator, bridging advanced theoretical modeling (e.g., MCST in porous FGM microstructures) with real-world industry applications in MEMS and semiconductor design.

His academic productivity, technical depth, and industry-academic integration make him highly suitable for the Research for Young Innovator Award, especially within mechanical engineering and materials science domains.

Kangkang Wang | Material Chemistry | Best Researcher Award

Dr. Kangkang Wang | Material Chemistry | Best Researcher Award

Research Assistant from Tsinghua University, China

Dr. Kangkang Wang is a postdoctoral researcher at the Department of Chemical Engineering, Tsinghua University. His research focuses on the controlled synthesis, properties, and applications of suspended ultralong carbon nanotube (CNT) heterojunctions. He has developed innovative methodologies for in-situ growth of functional materials on CNT surfaces, contributing to advancements in high-performance pressure sensors and photoelectronic devices. Dr. Wang has published over 25 peer-reviewed articles in reputable journals such as Advanced Functional Materials, ACS Nano, and Nano Letters. His work has significantly impacted the field of nanomaterials, particularly in overcoming the limitations of micrometer-scale synthesis in CNT-based heterojunctions. Dr. Wang’s multidisciplinary expertise encompasses synthesis techniques, characterization methods, and computational simulations, making him a valuable contributor to cutting-edge research in nanotechnology.

Professional Profile

Education

Dr. Wang earned his Doctor of Science in Engineering from the University of Chinese Academy of Sciences (UCAS) in June 2023, where he conducted research at the National Center for Nanoscience and Technology under the supervision of Prof. Liming Xie. His doctoral work focused on the synthesis and characterization of low-dimensional nanomaterials, particularly carbon nanotubes. In September 2023, he commenced his postdoctoral research at Tsinghua University’s Department of Chemical Engineering, working with Assoc. Prof. Rufan Zhang. His academic journey has equipped him with a strong foundation in chemical engineering and nanotechnology, enabling him to contribute significantly to the field.

Professional Experience

Dr. Wang’s professional experience includes his current role as a postdoctoral researcher at Tsinghua University, where he is involved in pioneering research on suspended ultralong CNT heterojunctions. During his doctoral studies at UCAS, he engaged in extensive research on nanomaterials, focusing on the controlled synthesis and application of CNTs. His work involved designing advanced CVD systems, developing in-situ characterization techniques, and fabricating functional devices. Dr. Wang’s collaborative efforts have led to significant advancements in the understanding and application of nanomaterials, positioning him as a leading researcher in the field.

Research Interests

Dr. Wang’s research interests lie in the controlled synthesis, characterization, and application of low-dimensional nanomaterials, with a particular focus on carbon nanotubes. He is interested in developing methodologies for the in-situ growth of functional materials on CNT surfaces to create 1D van der Waals heterojunctions. His work aims to overcome existing limitations in CNT-based devices, enabling the development of high-performance sensors and photoelectronic devices. Dr. Wang is also interested in exploring the growth mechanisms of ultralong CNTs and their heterojunctions, contributing to the broader understanding of nanomaterial synthesis and application.

Research Skills

Dr. Wang possesses a comprehensive skill set encompassing synthesis, characterization, and computational simulation. His synthesis expertise includes CVD growth of TMDs and ultralong CNTs, catalyst design, and fabrication of functional devices. In characterization, he is proficient in techniques such as TEM, SEM, AFM, Raman spectroscopy, and electrochemical analysis. Dr. Wang is also skilled in computational tools like COMSOL, Matlab, and Materials Studio, which he utilizes for modeling transport phenomena and chemical reactions. His multidisciplinary skills enable him to conduct comprehensive research, from material synthesis to device fabrication and analysis.

Awards and Honors

Dr. Wang has received several accolades recognizing his academic excellence and research contributions. Notably, he was awarded the Best Poster Award at the 14th A3 Symposium on Emerging Materials in 2024 and the 4th Novel Fiber Materials and their Applications conference in the same year. During his academic tenure, he received the National Scholarship in 2016 and was recognized as an Excellent Graduate in Henan Province in 2017. His consistent performance has earned him multiple graduate scholarships and the title of Excellent Communist Party Member in 2021 by the Chinese Academy of Sciences. These honors reflect his dedication and significant contributions to the field of nanotechnology.

Conclusion

Dr. Kangkang Wang is a distinguished researcher whose work in the synthesis and application of ultralong CNT heterojunctions has significantly advanced the field of nanotechnology. His innovative approaches to material synthesis and device fabrication have addressed critical challenges in the development of high-performance sensors and photoelectronic devices. With a robust publication record, multidisciplinary expertise, and recognition through various awards, Dr. Wang exemplifies the qualities of a leading researcher. His ongoing contributions continue to push the boundaries of nanomaterials research, making him a strong candidate for accolades such as the Best Researcher Award.

Publications Top Notes

  1. Efficient Pb(II) removal in batch and continuous flow adsorption systems based on chitosan-functionalized melamine foam monolithic material
  • Authors: Yan Liu, Xiangju Mao, Wenshan Ni, … Lei Fan, Kangkang Wang

  • Journal: Separation and Purification Technology

  • Year: 2025

2. Controlled synthesis and advanced applications of ultralong carbon nanotubes (Review)

  • Authors: Fei Wang, Yanlong Zhao, Kangkang Wang, … Qixuan Cai, Rufan Zhang

  • Year: 2025