Japheth Obiko | Engineering Achievements | Best Researcher Award

Dr. Japheth Obiko | Engineering Achievements | Best Researcher Award

Lecturer at Tshwane University of Technology, South Africa

Dr. Japheth Oirere Obiko is a dynamic and innovative researcher and academic specializing in mechanical and materials engineering. With a robust academic background and diverse research interests, Dr. Obiko is making significant contributions to advanced manufacturing and materials science. He currently holds dual roles as a Lecturer at the Department of Mining, Materials and Petroleum Engineering at Jomo Kenyatta University of Agriculture and Technology (JKUAT) in Kenya, and as a Postdoctoral Fellow at the Tshwane University of Technology in South Africa. His multidisciplinary research integrates cutting-edge methods in metal forming, welding metallurgy, and additive manufacturing, with a strong foundation in numerical simulation and machine learning. Dr. Obiko has authored 37 journal publications and 3 book chapters, contributing extensively to the scientific community. With editorial roles and collaborations with top-tier institutions like the University of the Witwatersrand, he demonstrates a commitment to both academic rigor and industrial applicability. His citation index reflects growing global recognition, and his mentorship of postgraduate students underscores his leadership in academic development. As a registered graduate engineer with the Engineers Board of Kenya, Dr. Obiko bridges theoretical research with practical engineering application, making him a strong contender for the Best Researcher Award.

Professional Profile

Education

Dr. Japheth Oirere Obiko’s educational journey is marked by academic excellence and specialization in engineering sciences. He obtained his Doctor of Philosophy (Ph.D.) in Chemical and Metallurgical Engineering from the prestigious University of the Witwatersrand in Johannesburg, South Africa in 2021. This rigorous doctoral program provided him with advanced competencies in material science, welding metallurgy, and computational modeling. Prior to this, he earned both his Master of Science and Bachelor of Science degrees in Mechanical Engineering from Jomo Kenyatta University of Agriculture and Technology (JKUAT), Kenya in 2015 and 2012, respectively. These formative academic stages laid a strong technical foundation in thermal systems, mechanical design, and manufacturing processes. Dr. Obiko’s educational progression illustrates a steady and deliberate move toward specialization in the emerging frontiers of materials engineering. As a registered graduate engineer with the Engineers Board of Kenya, he has translated this academic knowledge into recognized professional credentials. His pursuit of higher education not only reflects intellectual curiosity but also a determination to contribute meaningful innovations in applied engineering. Through continuous learning and scholarly inquiry, Dr. Obiko exemplifies the modern researcher—deeply informed, technically proficient, and driven by interdisciplinary engagement.

Professional Experience

Dr. Obiko has amassed a wealth of professional experience that combines academia, research, and industry consultancy. He is currently a Lecturer at Jomo Kenyatta University of Agriculture and Technology in Kenya, where he teaches and mentors students in mining, materials, and petroleum engineering. In addition to his teaching role, he serves as a Postdoctoral Fellow at Tshwane University of Technology in South Africa, engaging in advanced research in metal forming and additive manufacturing. Over the years, he has managed and participated in multiple research projects, with five significant studies either completed or ongoing. His experience includes one consultancy project that highlights his ability to translate theoretical research into practical industrial applications. Dr. Obiko’s professional footprint extends beyond teaching; it includes supervising postgraduate students, coordinating research collaborations with institutions like the University of the Witwatersrand, and contributing as a guest editor for a special issue on Smart Manufacturing in the journal Applied Sciences. His involvement in both academic and industrial environments enhances his capacity to bridge knowledge gaps and implement technological solutions. His contributions are further solidified by his authorship of numerous peer-reviewed papers and chapters, confirming his status as a respected academic and thought leader in engineering.

Research Interest

Dr. Japheth Oirere Obiko’s research interests lie at the intersection of materials engineering, computational modeling, and advanced manufacturing. He is deeply invested in understanding and enhancing processes like metal forming and welding metallurgy, both critical for industries ranging from automotive to aerospace. A key area of focus is Wire-Arc Additive Manufacturing (WAAM), where he explores novel techniques to optimize material properties and reduce production defects. His work also extends into numerical simulation, particularly through the Finite Element Method (FEM), enabling the prediction and control of complex material behaviors under various processing conditions. Additionally, Dr. Obiko is venturing into the integration of machine learning—especially Artificial Neural Networks—to improve material design and process automation. This interdisciplinary approach allows for more accurate modeling, real-time monitoring, and data-driven decision-making. His published work reflects a strong commitment to research translation, with applications that benefit both academia and industry. His interests not only align with global priorities in smart manufacturing and sustainable development but also showcase a futuristic vision of engineering that is responsive to emerging technologies. Through collaboration and innovation, Dr. Obiko continues to expand the boundaries of knowledge in applied materials science.

Research Skills

Dr. Obiko is equipped with a diverse and sophisticated array of research skills that enable him to undertake complex engineering investigations and produce impactful results. He is proficient in metal forming analysis and experimental mechanics, essential for optimizing deformation processes and improving material performance. His expertise in welding metallurgy includes the study of microstructural evolution and mechanical properties of welded joints, with practical relevance to industrial fabrication. He is highly skilled in Wire-Arc Additive Manufacturing (WAAM), a cutting-edge technology that he employs to explore new material structures and component efficiencies. Dr. Obiko’s computational skills are particularly advanced; he utilizes Finite Element Method (FEM) tools such as ANSYS and DEFORM for simulations involving thermal, mechanical, and structural analysis. Additionally, he is adept in data-driven modeling using machine learning tools, especially Artificial Neural Networks (ANN), which he incorporates to enhance predictive accuracy and optimization. These computational methods are complemented by his hands-on laboratory expertise in alloy design, microstructure characterization, and mechanical testing. His ability to blend experimental and numerical techniques provides a comprehensive framework for scientific inquiry. Dr. Obiko’s skill set is robust, interdisciplinary, and well-aligned with the demands of modern research in materials and manufacturing.

Awards and Honors

Dr. Japheth Obiko’s achievements in engineering research have earned him recognition within both academic and professional circles. His appointment as a Guest Editor for the Applied Sciences journal’s Special Issue on “Advanced Metal Forming and Smart Manufacturing Processes” is a testament to his expertise and leadership in the field. This role not only highlights his editorial acumen but also his recognition as a subject-matter expert globally. His doctoral and postdoctoral affiliations with leading institutions such as the University of the Witwatersrand and Tshwane University of Technology further reflect his academic merit. While he has not yet been formally awarded national or international medals, the depth of his contributions—spanning over 37 peer-reviewed journal publications and three scholarly book chapters—showcases a sustained and high-impact research trajectory. His citation index in Scopus and multiple collaborative efforts with global institutions provide further evidence of his growing influence. As a registered member of the Engineers Board of Kenya and an active contributor to industrial consultancy projects, Dr. Obiko has demonstrated both academic excellence and practical engagement. His dedication to research, innovation, and mentorship positions him as a strong candidate for the Best Researcher Award.

Conclusion

In conclusion, Dr. Japheth Oirere Obiko exemplifies the qualities of a forward-thinking researcher, educator, and professional engineer. His academic journey from Jomo Kenyatta University of Agriculture and Technology to internationally recognized institutions such as the University of the Witwatersrand has laid a strong foundation for his career in advanced manufacturing and materials science. His prolific research output, spanning 37 journal publications and several collaborative projects, reflects both depth and breadth in subject matter expertise. Moreover, his roles as a lecturer, postdoctoral researcher, and guest editor demonstrate a commitment to academic excellence, interdisciplinary collaboration, and mentorship. Dr. Obiko’s integration of simulation techniques, welding technologies, and machine learning into engineering research addresses real-world challenges and promotes innovation. His contributions are timely and relevant, aligning with global goals for sustainable, smart manufacturing. Although still early in his professional trajectory, his influence is rapidly growing, as evidenced by his scholarly citations and editorial invitations. By maintaining strong industry ties and fostering future engineers, he continues to impact both theory and practice. Dr. Obiko stands out as a highly deserving nominee for the Best Researcher Award, representing the next generation of African scholars leading transformative change in science and technology.

Publications Top Notes

1. Title: Advancing the hydrogen production economy: A comprehensive review of technologies, sustainability, and future prospects
Authors: SO Jeje, T Marazani, JO Obiko, MB Shongwe
Year: 2024
Citations: 95

2. Title: Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software
Authors: JO Obiko, FM Mwema, MO Bodunrin
Year: 2019
Citations: 50

3. Title: An overview of conventional and non-conventional techniques for machining of titanium alloys
Authors: SR Oke, GS Ogunwande, M Onifade, E Aikulola, ED Adewale, …
Year: 2020
Citations: 46

4. Title: Forging optimisation process using numerical simulation and Taguchi method
Authors: JO Obiko, FM Mwema, H Shangwira
Year: 2020
Citations: 23

5. Title: Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Taguchi method
Authors: JO Obiko, FM Mwema, MO Bodunrin
Year: 2021
Citations: 22

6. Title: A multi-response optimization of the multi-directional forging process for aluminium 7075 alloy using grey-based Taguchi method
Authors: C Obara, FM Mwema, JN Keraita, H Shagwira, JO Obiko
Year: 2021
Citations: 19

7. Title: Friction correction of flow stress-strain curve in the upsetting process
Author: J Obiko
Year: 2021
Citations: 16

8. Title: Effect of punch force on the upsetting deformation process using three-dimensional finite element analysis
Authors: FM Mwema, JO Obiko, ET Akinlabi, SA Akinlabi, OS Fatoba
Year: 2019
Citations: 14

9. Title: On the uniaxial compression testing of metallic alloys at high strain rates: an assessment of DEFORM-3D simulation
Authors: M Bodunrin, J Obiko, D Klenam
Year: 2023
Citations: 13

10. Title: Strain rate-strain/stress relationship during isothermal forging: a deform-3D FEM
Authors: J Obiko, F Mwema, ET Akinlabi
Year: 2020
Citations: 13

Wei-Wei Yan | Chemical Engineering | Best Researcher Award

Dr. Wei-Wei Yan | Chemical Engineering | Best Researcher Award

Assistant Professor at Henan University of Technology, China

Dr. Yan Wei-Wei is a rising academic in the field of chemical engineering with a strong focus on membrane science, separation processes, and sustainable chemical technologies. She is currently an Assistant Professor (Special Appointment) at the School of Chemistry and Chemical Engineering at Henan University of Technology. Dr. Yan’s academic journey spans across prestigious institutions in China and Japan, having earned her Doctor of Engineering from Hiroshima University in 2024, her Master’s from China University of Mining & Technology in 2021, and her Bachelor’s degree from Linyi University in 2018. Over the past five years, she has made notable research contributions, publishing 23 articles in SCI-indexed journals, including top-tier publications such as Journal of Membrane Science, Chemical Engineering Journal, and AIChE Journal. Her research addresses critical issues in membrane fabrication, membrane reactor design, and the purification of complex mixtures. Her scientific work has not only expanded the understanding of transport mechanisms in organosilica membranes but also advanced energy-efficient approaches for ammonia production and aromatic compound purification. As a passionate and driven scholar, Dr. Yan combines rigorous experimentation with innovative thinking, demonstrating the potential to influence the future direction of chemical engineering, particularly in the domains of green chemistry and advanced separation technologies.

Professional Profiles

Education

Dr. Yan Wei-Wei has pursued a comprehensive and international education in chemical engineering, marked by a strong foundation in both theoretical principles and practical research methodologies. Her most recent academic achievement is the completion of a Doctor of Engineering degree in 2024 from the Graduate School of Engineering at Hiroshima University, Japan. During her doctoral studies, she focused on advanced membrane technology, gaining valuable insights into organosilica membrane synthesis and transport phenomena. Prior to this, she earned her Master of Engineering in 2021 from the School of Chemical Engineering & Technology at China University of Mining & Technology, where her research addressed challenges in process optimization and membrane separation systems. Her academic foundation was laid with a Bachelor of Engineering degree in 2018 from the School of Chemistry & Chemical Engineering at Linyi University. Additionally, she undertook earlier undergraduate studies in 2016 at the School of Chemical Engineering, Qingdao University of Science & Technology, which provided her with a strong grounding in chemical engineering principles. Dr. Yan’s educational background reflects a steady and progressive deepening of expertise, from general chemical engineering to highly specialized research in membrane science. This academic path has prepared her to contribute meaningfully to both academia and industry.

Professional Experience

Dr. Yan Wei-Wei began her academic career with an appointment as an Assistant Professor (Special Appointment) at the School of Chemistry and Chemical Engineering, Henan University of Technology, in December 2024. In this role, she has been actively engaged in teaching undergraduate and graduate courses, supervising student research projects, and developing her own research program centered on membrane technology and sustainable chemical processes. Her professional experience is characterized by a seamless transition from rigorous academic training to a dynamic research and teaching environment. At Henan University of Technology, Dr. Yan has taken a proactive role in contributing to interdisciplinary research initiatives, especially in the development of membrane reactors and their application in ammonia production. She has also participated in faculty collaborations aimed at improving laboratory facilities and integrating innovative experimental techniques into the curriculum. Prior to her current appointment, Dr. Yan was involved in various research projects during her doctoral and master’s studies, where she honed her skills in membrane fabrication, analytical techniques, and chemical process design. Her professional trajectory reflects a strong commitment to scientific advancement, collaborative research, and the mentorship of future engineers. Her current role marks the beginning of what promises to be a highly impactful academic career.

Research Interest

Dr. Yan Wei-Wei’s research interests lie at the intersection of membrane science, chemical separation, and sustainable chemical engineering. Her primary focus is on the preparation of organosilica membranes using sol-gel processes and the in-depth analysis of their transport mechanisms. She is particularly interested in how these membranes can be tailored at the molecular level to enhance selectivity and permeability for specific gas or liquid separation applications. Another key area of her research is the design and implementation of membrane reactors for ammonia synthesis. This innovative approach aims to improve energy efficiency and yield compared to conventional catalytic processes, representing a significant step toward green chemical production. Additionally, Dr. Yan is deeply engaged in the extraction and chromatographic purification of oxygen- and nitrogen-containing aromatic compounds, which are vital in the petrochemical and fine chemical industries. Her work explores how these complex mixtures can be efficiently separated using advanced membrane and chromatographic techniques. Dr. Yan’s research contributes to the development of energy-efficient, environmentally friendly, and economically viable solutions for chemical separation and synthesis. She continues to explore novel materials and process intensification strategies that align with global efforts toward sustainable industrial practices and circular economy principles.

Research Skills

Dr. Yan Wei-Wei possesses a robust set of research skills developed through years of academic training and hands-on laboratory experience. She is highly proficient in sol-gel chemistry and membrane fabrication techniques, particularly for organosilica-based materials. Her expertise extends to the characterization of membranes using advanced analytical tools such as SEM, TEM, XRD, FTIR, and TGA, allowing her to comprehensively evaluate membrane structure, thermal stability, and chemical functionality. Dr. Yan is also skilled in gas permeation and separation performance testing, which she employs to understand transport mechanisms and optimize membrane functionality. Her work with membrane reactors involves designing experimental setups for catalytic reactions under controlled conditions, including ammonia synthesis. In addition, she has experience in chromatographic purification and extraction techniques, particularly for aromatic compounds, which require precision and selectivity. Dr. Yan is well-versed in chemical process simulation software and data analysis tools, enabling her to model reaction kinetics and separation efficiencies. Her scientific writing and publication skills are evidenced by her 23 SCI-indexed journal articles, and she is adept at preparing research proposals and managing experimental workflows. These comprehensive research competencies make her an asset to any collaborative or interdisciplinary scientific environment focused on sustainable and advanced chemical engineering technologies.

Awards and Honors

Dr. Yan Wei-Wei has been recognized for her academic excellence and research contributions through multiple awards and honors throughout her academic career. While pursuing her doctoral studies at Hiroshima University, she was distinguished for her outstanding research performance in membrane science, earning accolades for several of her high-impact publications. She was frequently acknowledged by her academic advisors and peers for her dedication, innovative thinking, and perseverance in the laboratory. During her master’s and undergraduate studies in China, Dr. Yan was a recipient of various academic scholarships, including merit-based awards recognizing her strong academic standing and research potential. Her early achievements also include top rankings in departmental research presentations and poster competitions, where she demonstrated clarity in communication and deep understanding of complex chemical engineering concepts. In addition to institutional honors, her publications in highly regarded journals have positioned her as an emerging expert in the field, drawing interest from both national and international collaborators. These recognitions underscore her commitment to excellence, her capacity for independent and team-oriented research, and her potential to make significant contributions to the advancement of chemical engineering. Dr. Yan continues to pursue opportunities that challenge her skills and further her impact on sustainable science and technology.

Conclusion

In summary, Dr. Yan Wei-Wei stands out as a dedicated and innovative chemical engineer whose academic and research pursuits reflect a strong commitment to scientific advancement and sustainability. From her foundational education in China to her doctoral training in Japan, she has cultivated a rich knowledge base in membrane technology, separation processes, and sustainable chemical production. Her current role as an Assistant Professor at Henan University of Technology marks the beginning of a promising academic career characterized by research excellence, interdisciplinary collaboration, and impactful teaching. With 23 publications in well-regarded scientific journals, she has already contributed significantly to the field of chemical engineering, particularly in membrane science and green process design. Dr. Yan’s expertise in sol-gel membrane fabrication, reactor engineering, and purification technologies positions her to tackle some of the pressing challenges facing the chemical industry today. As she continues to build her academic portfolio, she aims to mentor students, lead collaborative research initiatives, and drive innovation in sustainable chemical engineering practices. Her passion, precision, and perseverance make her a valuable contributor to the academic community and a potential leader in advancing environmentally conscious chemical technologies.

 Publications Top Notes

1. Chemical Bond Dissociation Insights into Organic Macerals Pyrolysis of Qinghua Bituminous Coal: Vitrinite vs Inertinite

  • Authors: Shu Yan, Ning Mao, Meilin Zhu, Na Li, Weiwei Yan, Binyan He, Jing-Pei Cao, Yuhua Wu, Jianbo Wu, Hui Zhang, Hongcun Bai

  • Year: 2024

  • Citations:

2. Synergetic Polymetallic Activation: Boosting Performance of Calcium Ferrite Oxygen Carriers in Chemical Looping Combustion

  • Authors: Shu Yan, Liangliang Meng, Chang Geng, Hongcun Bai

  • Year: 2024

  • Citations: 3