Suranjana Mayani | Material Science | Applied Research Award

Prof. Dr. Suranjana Mayani | Material Science | Applied Research Award

Professor & Head of Marwadi University Rajkot, India

Prof. (Dr.) Suranjana V. Mayani is an innovative and accomplished chemist with over two decades of expertise spanning heterogeneous catalysis, environmental remediation, and nanocomposite materials. Born on December 27, 1978, and holding M.Sc. and Ph.D. degrees from Gauhati University, she has dedicated her career to advancing green chemistry and sustainable material science. Her doctoral work on catalytic wet oxidation of phenols laid the foundation for her later research in mesoporous catalysts and nano‑structured composites. She has held major academic and research positions internationally—serving as Postdoctoral Fellow at Hoseo University (Korea), Research Professor at Dongguk University, and currently as Professor and Head of Chemistry at Marwadi University, India. Prof. Mayani has over 40 journal publications, eight book chapters, and numerous conference presentations. As a reviewer for prestigious international journals and an active member of chemical societies, she contributes actively to the scientific community. Her leadership in innovation is demonstrated by her roles in student start-up initiatives, core membership at Marwadi University’s research centre, and facilitation of funded projects in environmental and energy technology. Passionate about mentoring and sustainable science, she bridges fundamental research with applied solutions for global challenges.

Professional Profile

Education

Prof. Mayani completed her B.Sc. (Chemistry, Physics, Math, English) at B. Borooah College under Gauhati University in 2000, followed by an M.Sc. in Physical Chemistry with first class distinction in 2002 from the same university. Awarded a Ph.D. in Chemistry in 2009 from Gauhati University under the guidance of Prof. K. G. Bhattacharyya, her thesis focused on catalytic wet oxidation of phenol and related compounds, emphasizing environmental cleanup via heterogeneous chemistry. Additionally, in 2004, she earned an A‑grade Diploma in Cheminformatics from the Institute of Cheminformatics Studies, Noida. Her academic journey reflects a robust foundation in physical and organic chemistry, advanced analytical techniques (AAS, FTIR, UV–Vis, GC, GC‑MS, PXRD, TGA, SEM‑EDS, TEM, ICP‑OES, TOC), and computational chemistry tools. This strong educational background underpins her current research in nanocomposite materials, silica‑carbon hybrids, and green catalytic processes aimed at environmental and biotechnological applications. From fundamental science to interdisciplinary innovation, her qualifications showcase a blend of traditional chemistry expertise and modern scientific methodologies.

Professional Experience

Prof. Mayani’s career spans over 20 years, beginning with early roles at Gauhati University as Project Assistant (2004–2005), Junior Research Fellow (2005–2006), and Research Assistant (2006–2009), where she honed synthesis and characterization of mesoporous catalysts and developed advanced analytical skills. In 2009, she served as Visiting Research Scholar at CSIR‑CSMCRI, India. From 2010 to 2011, she was a Postdoctoral Fellow at Hoseo University, Korea, researching porous carbon frameworks and hybrid nanocomposites. Subsequently, she joined Dongguk University (2011–2018) as Assistant/Research Professor, leading work on metal‑impregnated SBA‑15, porous carbons, and composite catalysis. In 2018 she returned to India as Associate Professor at Marwadi University, teaching and managing projects in nanocomposites, azo-arylation, and coordination nanoparticle catalysis. Since July 2024, she has been Professor and Head of the Department of Chemistry, overseeing research in bionanocomposites, wound-healing bioformulations, biogas production, and plant‑based skincare. She has guided numerous funded research initiatives under SSIP and NewGen IEDC schemes, engaging students in projects from defluoridation techniques to sustainable coatings and energy materials. Her leadership, teaching, and research have continuously fostered academic excellence and innovation.

Research Interests

Prof. Mayani’s research centers on the design, synthesis, and application of advanced materials for sustainable science. Her key interests include nanocomposites, nanoparticles, organic–inorganic hybrid materials, and mesoporous structures. She develops silica–carbon frameworks and explores their catalytic functions and adsorption capabilities. Her environmental focus involves wastewater treatment strategies, utilizing heterogeneous catalysis and adsorption techniques to remediate pollutants like phenols, dyes, fluoride, and microplastics. She emphasizes valorization of agricultural and industrial wastes, converting them into functional materials. Additionally, she is investigating polymer composite systems for biomedical and environmental applications. Recent interests include bio-functionalized composites for wound healing, plant-extract-based skin formulations, and biogas-enhancing methods. Her multidisciplinary approach intersects materials chemistry, environmental engineering, and biotechnology, aiming to scale lab results into real-world solutions for clean water, renewable energy, and eco-friendly health products.

Research Skills

Prof. Mayani brings deep expertise in catalyst synthesis and a suite of analytical and characterization technologies: AAS, FTIR, UV‑Vis, GC, GC‑MS, PXRD, TGA, SEM‑EDS, TEM, ICP‑OES, CHNS analysis, TOC, and nitrogen adsorption–desorption isotherms. She excels in fabricating metal‑supported mesoporous frameworks (MCM‑41, SBA‑15) and porous carbon materials—achieving precise control over composition and structure. Her skills include green oxidation, catalytic reduction, azo-arylation, adsorption, photocatalysis, and composite formulation. She is proficient with cheminformatics tools (ChemDraw, Microcal Origin) and data analysis software. Her project management capabilities span grant writing, student mentorship, and cross-disciplinary collaboration. She integrates experimental methods with environmental monitoring techniques for air, water, and soil analysis, demonstrating rigorous data interpretation and sustainable deployment of technologies.

Awards and Honors

  • Recipient of the prestigious WISE-SCOPE Fellowship (DST, Government of India) for eco-friendly heavy-metal adsorption research—includes fellowship, research grant, field‑work support, and equipment funding.

  • Awarded seed grant from Marwadi University’s SSIP and NewGen IEDC schemes for projects on water defluoridation, fluoride removal, biogas production enhancement, silky‑skin formulations, and nanocomposite coatings (INR 2–2.5 million funding each).

  • Recognized as an invited reviewer and session chair/speaker at ISGST 2024, Malaysia.

  • Member of prestigious academic bodies: American Chemical Society, Korean Chemical Society, and Catalysis Society of India.

  • Serves on editorial and review boards of high-impact journals: Chemical Engineering Communications, CLEAN, Environmental Monitoring & Assessment, Ecotoxicology, ACS Omega, Nature’s Scientific Reports, among others, reflecting her leadership and scholarly prominence.

Conclusion

Prof. (Dr.) Suranjana V. Mayani exemplifies an academic leader whose work bridges groundbreaking research, effective teaching, and impactful innovation. With deep expertise in nanostructured catalysts, environmental remediation, and sustainable materials, she drives transformative projects and mentors future scientists. Her international experience, strong publication record, and active professional engagement underscore her dedication to advancing chemical science. Under her guidance, her department continues to flourish as a hub for interdisciplinary research, nurturing start-ups and delivering real-world solutions. A visionary educator and innovator, Prof. Mayani remains committed to leveraging science for societal benefit—pursuing excellence in education, research, and sustainable technology.

 

Publications Top Notes

1.
Title: Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM41
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2008
Citations: 121

2.
Title: Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2008
Citations: 76

3.
Title: Fe(III)-, Co(II)- and Ni(II)-impregnated MCM41 for wet oxidative destruction of 2,4-dichlorophenol in water
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2009
Citations: 63

4.
Title: A non-chromatographic method for the separation of highly pure naphthalene crystals from pyrolysis fuel oil
Authors: V.J. Mayani, S.V. Mayani, Y. Lee, S.K. Park
Year: 2011
Citations: 32

5.
Title: Catalytic destruction of 4‐chlorophenol in water
Authors: S. Chaliha, K.G. Bhattacharyya, P. Paul
Year: 2008
Citations: 29

6.
Title: Using Mn(II)−MCM41 as an Environment-Friendly Catalyst to Oxidize Phenol, 2-Chlorophenol, and 2-Nitrophenol in Aqueous Solution
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2008
Citations: 29

7.
Title: A sustainable nanocomposite Au(Salen)@CC for catalytic degradation of eosin Y and chromotrope 2R dyes
Authors: V.J. Mayani, S.V. Mayani, S.W. Kim
Year: 2017
Citations: 19

8.
Title: Synthesis and characterization of metal incorporated composite carbon materials from pyrolysis fuel oil
Authors: S.V. Mayani, V.J. Mayani, S.K. Park, S.W. Kim
Year: 2012
Citations: 19

9.
Title: Development of nanocarbon gold composite for heterogeneous catalytic oxidation
Authors: V.J. Mayani, S.V. Mayani, S.W. Kim
Year: 2012
Citations: 17

10.
Title: Catalytic wet oxidation of phenol and its derivatives with Fe₂O₃ and MnO₂
Authors: S. Chaliha, K.G. Bhattacharyya
Year: 2006
Citations: 16

 

Yihong Li | Material Science | Best Researcher Award

Prof. Yihong Li | Material Science | Best Researcher Award

Outstanding Master Supervisor at Taiyuan University of Science and Technology, China 

Dr. Yihong Li is a highly accomplished professor in Metallurgical Engineering at Taiyuan University of Science and Technology, with a distinguished career dedicated to high-quality steel purification, metallurgical reactor optimization, and the integration of artificial intelligence in metallurgical processes. Born in November 1986, she earned her Ph.D. in Metallurgical Engineering from the University of Science and Technology Beijing. A recipient of numerous accolades, Dr. Li serves as Director of the Metallurgical Engineering Practical Teaching Research Association of the Chinese Society of Education and holds key editorial positions with influential journals such as “China Metallurgy” and “Continuous Casting.” Recognized as an Outstanding Communist Party Member and Xingwo Outstanding Contribution Expert, she exemplifies academic leadership and innovation. She has spearheaded six major provincial and national research projects and led several teaching reform initiatives. With over 30 academic publications, including more than 10 indexed in SCI/EI, seven national invention patents, and a co-authored textbook, her contributions to both research and education are profound. Dr. Li’s commitment to interdisciplinary innovation and academic excellence marks her as a transformative figure in China’s metallurgical field, bridging theoretical exploration with industrial application through collaborative projects and technology transfers.

Professional Profiles

Education 

Dr. Yihong Li’s academic journey reflects a steadfast commitment to metallurgical innovation and academic rigor. She began her formal studies in 2005 at Guizhou University, where she completed her Bachelor’s degree in Metallurgical Engineering in 2009. Demonstrating academic excellence, she was admitted to the University of Science and Technology Beijing, one of China’s foremost institutions in materials science and engineering. There, she pursued her doctoral degree from 2009 to 2015, earning a Ph.D. in Metallurgical Engineering. Her graduate research laid the foundation for her later contributions to high-quality steel purification and reactor process optimization, combining theoretical insight with practical experimentation. Her doctoral dissertation focused on the intricate mechanisms of decarburization and flow behaviors in RH vacuum refining processes, work that has since influenced industrial applications. Throughout her studies, Dr. Li immersed herself in multidisciplinary approaches, drawing from thermodynamics, fluid mechanics, and computational simulation. Her academic path provided both depth in metallurgical science and breadth across engineering problem-solving. This robust educational foundation has been instrumental in enabling her to lead significant research projects and develop innovative teaching models. Dr. Li’s commitment to continuous learning and mentorship is evident through her current role in graduate supervision and curriculum development at Taiyuan University of Science and Technology.

Professional Experience

Dr. Yihong Li’s professional trajectory is marked by a progressive ascent in academic ranks at Taiyuan University of Science and Technology (TYUST). She joined TYUST in January 2015 as a lecturer, shortly after completing her Ph.D., and quickly distinguished herself through her dedication to research and education. Her outstanding performance led to her promotion to Associate Professor in December 2017, and she attained full Professorship in December 2022. In these roles, Dr. Li has contributed extensively to both teaching and institutional development. She has led core undergraduate and postgraduate courses such as “Metallurgical Transmission Principles,” “Advanced Ferrous Metallurgy,” and “Computer Simulation of Metallurgical Processes,” fostering analytical thinking and applied knowledge among students. In parallel, she has assumed significant research responsibilities, acting as Principal Investigator for numerous national and provincial-level projects, including the National Natural Science Foundation and Shanxi Key R&D programs. Her dual commitment to academic excellence and industrial collaboration is evident in her leadership of five school-enterprise projects. As Director of the Metallurgical Engineering Practical Teaching Research Association, she has been instrumental in promoting experiential learning and educational reform. Dr. Li’s blend of research innovation, teaching excellence, and institutional service reflects her holistic approach to professional growth and impact.

Research Interest

Dr. Yihong Li’s research is anchored in advancing the frontiers of Metallurgical Engineering through a triad of core themes: purification of high-quality steel, optimization of metallurgical reactor systems, and the application of artificial intelligence in metallurgical process control. Her passion lies in exploring the underlying physical and chemical phenomena that govern steelmaking, particularly within the context of RH vacuum refining processes. She is deeply engaged in understanding gas-liquid two-phase flow patterns, decarburization mechanisms, and the control of non-metallic inclusions—all of which are crucial for producing ultra-clean steel. Dr. Li also investigates the complex behavior of bubbles and interfacial mass transfer in metallurgical reactors, contributing to the optimization of reactor geometry and operational parameters. In recent years, she has expanded her research into the use of computational fluid dynamics (CFD), data-driven modeling, and AI-based prediction techniques to enhance process stability and quality control. Her interdisciplinary work bridges experimental metallurgy with advanced simulation and intelligent control, promoting innovation that meets modern manufacturing demands. Through collaborations with industry and academia, she strives to develop environmentally sustainable, high-efficiency steel production technologies. Dr. Li’s research not only informs her teaching but also underpins policy and industrial practices in China’s metallurgical landscape.

Research Skills

Dr. Yihong Li possesses a comprehensive skill set that combines deep theoretical expertise with practical technological capabilities in the field of metallurgical engineering. Her core research skills include advanced experimental metallurgy, fluid dynamics simulation, vacuum refining process analysis, and steel inclusion characterization. She is proficient in using computational tools such as ANSYS Fluent, COMSOL Multiphysics, and MATLAB for modeling gas-liquid interactions and heat transfer phenomena in RH vacuum reactors. Additionally, she applies statistical analysis and artificial intelligence techniques—such as neural networks and machine learning algorithms—for process optimization and predictive analytics in steel manufacturing. Dr. Li is adept in metallurgical sample preparation, scanning electron microscopy (SEM), and optical microscopy, enabling her to evaluate microstructures and inclusion morphologies. Her patent-related skills include innovation management, prototype testing, and patent writing, with seven national invention patents either authorized or under commercialization. She is experienced in collaborative research management, from grant writing and funding acquisition to project supervision and academic publishing. Her ability to integrate scientific theory with industrial relevance has made her a trusted partner in both academic and enterprise collaborations. As a seasoned educator and researcher, Dr. Li also excels in curriculum design, postgraduate mentorship, and interdepartmental coordination for joint training programs.

Awards and Honors

Dr. Yihong Li has been the recipient of numerous accolades recognizing her excellence in research, education, and professional service. Notably, she was honored as a Xingwo Outstanding Contribution Expert, a prestigious title awarded for her impactful research in the metallurgical field and her contributions to teaching reform. In 2022, she was named Outstanding Guest Editor for the journal “Continuous Casting,” underscoring her editorial leadership and academic standing. Dr. Li also serves on the Young Editorial Boards of both “China Metallurgy” and “Continuous Casting,” demonstrating her influence in shaping scholarly discourse. Her recognition as an Outstanding Communist Party Member further reflects her commitment to institutional values and community engagement. Throughout her career, Dr. Li has received institutional and provincial grants for research and teaching innovation, including funding from the National Natural Science Foundation and the Shanxi Key R&D Program. She has led projects selected as exemplary in school-enterprise collaboration and graduate education reform. Her pioneering work has resulted in seven authorized invention patents and one notable scientific achievement transformation. These honors represent not only professional validation but also an acknowledgment of her dedication to fostering innovation, academic excellence, and public service in metallurgical engineering and higher education.

Conclusion

Dr. Yihong Li stands as a distinguished scholar and educator whose contributions to metallurgical engineering have garnered national and institutional recognition. Her career seamlessly blends theoretical research with practical innovation, educational advancement with scientific exploration, and academic leadership with social responsibility. From her foundational education at Guizhou University and the University of Science and Technology Beijing to her current professorship at Taiyuan University of Science and Technology, she has maintained a trajectory of excellence and impact. Dr. Li’s work in high-quality steel purification, reactor design, and AI applications positions her at the forefront of modern metallurgy. Her prolific output—including over 30 published articles, multiple patents, and collaborative textbooks—demonstrates her dedication to knowledge creation and dissemination. Equally commendable is her commitment to student development, as seen in her design of practical teaching models and mentorship in graduate programs. Through her editorial service, research leadership, and institutional reform efforts, Dr. Li continues to shape the future of metallurgical science in China. Her achievements reflect not only technical proficiency but also a passion for sustainable development and academic innovation. As she moves forward, Dr. Li remains dedicated to advancing metallurgical engineering as both a science and a transformative societal force.

 Publications Top Notes

  1. Title: Solvent-free green synthesis of zeolite A from coal fly ash for the removal of Pb²⁺
    Authors: Zhang, Peng; Niu, Yiting; Wang, Yang; Zhang, Pengju; Zhao, Xin
    Year: 2025

  2. Title: Evolution of the solid-liquid interface using a novel hybrid corrosion inhibitor to improve Al-air battery performance
    Authors: Zhang, Peng; Peng, Wei; Miao, Jing; Li, Yihong; Zhang, Pengju
    Year: 2025
    Citations: 1

  3. Title: Enhancing peroxymonosulfate activation for tetracycline degradation using metallurgical iron-containing solid waste: A novel and straightforward high-value utilization process of LT ash
    Authors: Zhang, Peng; Wang, Yang; Peng, Wei; Zhang, Pengju; Zhao, Xin
    Year: 2025

  4. Title: Water Model Study on Alloy Melting and Mixing in RH Refining Process
    Authors: Xu, Zhibo; Chen, Chao; Wang, Jia; Xue, Liqiang; Fan, Jinping
    Year: 2025